Dieback in temperate forests is understudied, despite this biome is predicted to be increasingly affected by more extreme climate events in a warmer world. To evaluate the potential drivers of dieback we reconstructed changes in radial growth and intrinsic water-use efficiency (iWUE) from stable isotopes in tree rings. Particularly, we compared tree size, radial-growth trends, growth responses to climate (temperature, precipitation, cloudiness, number of foggy days) and drought, and changes in iWUE of declining and non-declining trees showing contrasting canopy dieback and defoliation. This comparison was done in six temperate forests located in northern Spain and based on three broadleaved tree species (Quercus robur, Quercus humilis, Fagus sylvatica). Declining trees presented lower radial-growth rates than their non-declining counterparts and tended to show lower growth variability, but not in all sites. The growth divergence between declining and non-declining trees was significant and lasted more in Q. robur (15–30 years) than in F. sylvatica (5–10 years) sites. Dieback was linked to summer drought and associated atmospheric patterns, but in the wettest Q. robur sites cold spells contributed to the growth decline. In contrast, F. sylvatica was the species most responsive to summer drought in terms of growth reduction followed by Q. humilis which showed coupled changes in growth and iWUE as a function of tree vigour. Low growth rates and higher iWUE characterized declining Q. robur and F. sylvatica trees. However, declining F. sylvatica trees became less water-use efficient close to the dieback onset, which could indicate impending tree death. In temperate forests, dieback and growth decline can be triggered by climate extremes such as dry and cold spells, and amplified by climate warming and rising drought stress.

Drought and cold spells trigger dieback of temperate oak and beech forests in northern Spain

Colangelo, Michele;
2021-01-01

Abstract

Dieback in temperate forests is understudied, despite this biome is predicted to be increasingly affected by more extreme climate events in a warmer world. To evaluate the potential drivers of dieback we reconstructed changes in radial growth and intrinsic water-use efficiency (iWUE) from stable isotopes in tree rings. Particularly, we compared tree size, radial-growth trends, growth responses to climate (temperature, precipitation, cloudiness, number of foggy days) and drought, and changes in iWUE of declining and non-declining trees showing contrasting canopy dieback and defoliation. This comparison was done in six temperate forests located in northern Spain and based on three broadleaved tree species (Quercus robur, Quercus humilis, Fagus sylvatica). Declining trees presented lower radial-growth rates than their non-declining counterparts and tended to show lower growth variability, but not in all sites. The growth divergence between declining and non-declining trees was significant and lasted more in Q. robur (15–30 years) than in F. sylvatica (5–10 years) sites. Dieback was linked to summer drought and associated atmospheric patterns, but in the wettest Q. robur sites cold spells contributed to the growth decline. In contrast, F. sylvatica was the species most responsive to summer drought in terms of growth reduction followed by Q. humilis which showed coupled changes in growth and iWUE as a function of tree vigour. Low growth rates and higher iWUE characterized declining Q. robur and F. sylvatica trees. However, declining F. sylvatica trees became less water-use efficient close to the dieback onset, which could indicate impending tree death. In temperate forests, dieback and growth decline can be triggered by climate extremes such as dry and cold spells, and amplified by climate warming and rising drought stress.
2021
File in questo prodotto:
File Dimensione Formato  
2021_Camarero et al_Dendrochonoligia_dieback of temperate oak and beech.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Non definito
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/188278
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact