The Lidar Ocean Color (LiOC) Monte Carlo code has been developed to simulate the in-water propagation of the lidar beam emitted by the ALADIN ADM-Aeolus instrument in the ultraviolet (UV) spectral region (∼ 355 nm). To this end, LiOC accounts for reflection/transmission processes at the sea surface, absorption and multiple scattering in the water volume, and reflection from the sea bottom. The water volume components included in the model are pure seawater, Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and/or a generic absorbing species. By considering the transmission/reception measurement geometry of ALADIN ADM-Aeolus, the study documents the variability of the normalized backscattered signal in different bio-optical conditions. The potential for data product retrieval based on information at 355 nm is considered by developing a demonstrative lookup table to estimate the absorption budget exceeding that explained by Chl-a. Results acknowledge the interest of space programs in exploiting UV bands for ocean color remote sensing, as, for instance, addressed by the PACE mission of NASA.

In-water lidar simulations: the ALADIN ADM-Aeolus backscattered signal at 355 nm

Di Paolantonio, Marco;Franco, Noemi;Di Girolamo, Paolo;
2024-01-01

Abstract

The Lidar Ocean Color (LiOC) Monte Carlo code has been developed to simulate the in-water propagation of the lidar beam emitted by the ALADIN ADM-Aeolus instrument in the ultraviolet (UV) spectral region (∼ 355 nm). To this end, LiOC accounts for reflection/transmission processes at the sea surface, absorption and multiple scattering in the water volume, and reflection from the sea bottom. The water volume components included in the model are pure seawater, Chlorophyll-a concentration (Chl-a), Colored Dissolved Organic Matter (CDOM), and/or a generic absorbing species. By considering the transmission/reception measurement geometry of ALADIN ADM-Aeolus, the study documents the variability of the normalized backscattered signal in different bio-optical conditions. The potential for data product retrieval based on information at 355 nm is considered by developing a demonstrative lookup table to estimate the absorption budget exceeding that explained by Chl-a. Results acknowledge the interest of space programs in exploiting UV bands for ocean color remote sensing, as, for instance, addressed by the PACE mission of NASA.
2024
File in questo prodotto:
File Dimensione Formato  
oe-32-13-22781.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 7.2 MB
Formato Adobe PDF
7.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/187555
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact