The primary aim of this research was to investigate and evaluate the effects of thermo-vacuum modification through forced convection on selected chemical, physical, and mechanical characteristics of Siberian larch (Larix sibirica L.) wood. Larch wood boards were thermally-modified, using press-vacuum plant technology, for three hours at a temperature of 200 °C and a pressure of 350 mBar. In order to characterise the thermally-modified (TH) and unmodified (CTRL) wood samples, the extractives, lignin and holocellulose content, volumetric swellings, compression strength, and modulus of elasticity (MOE) were determined. Gas chromatographic-mass spectrometric (GC-MS) analysis revealed chemical compound changes as a result of the thermal modification process where some extractives became undetectable after treatment while some new extractives were detected. Thermally-modified larch wood exhibited lower volumetric swelling compared to the untreated samples. Markedly, thermally-modified larch wood had lower tendency to absorb moisture. In addition, thermally-treated wood had slightly higher compression strength parallel to the grain, which was 0.29% higher than that of unmodified samples. Meanwhile, a 7.6% reduction in MOE was recorded in the thermally-treated wood.

Effect of thermo-vacuum modification on selected chemical, physical, and mechanical properties of Siberian larch (Larix sibirica L.) wood

Giudice, Valentina Lo;Mecca, Marisabel;Moretti, Nicola;Todaro, Luigi
2023-01-01

Abstract

The primary aim of this research was to investigate and evaluate the effects of thermo-vacuum modification through forced convection on selected chemical, physical, and mechanical characteristics of Siberian larch (Larix sibirica L.) wood. Larch wood boards were thermally-modified, using press-vacuum plant technology, for three hours at a temperature of 200 °C and a pressure of 350 mBar. In order to characterise the thermally-modified (TH) and unmodified (CTRL) wood samples, the extractives, lignin and holocellulose content, volumetric swellings, compression strength, and modulus of elasticity (MOE) were determined. Gas chromatographic-mass spectrometric (GC-MS) analysis revealed chemical compound changes as a result of the thermal modification process where some extractives became undetectable after treatment while some new extractives were detected. Thermally-modified larch wood exhibited lower volumetric swelling compared to the untreated samples. Markedly, thermally-modified larch wood had lower tendency to absorb moisture. In addition, thermally-treated wood had slightly higher compression strength parallel to the grain, which was 0.29% higher than that of unmodified samples. Meanwhile, a 7.6% reduction in MOE was recorded in the thermally-treated wood.
2023
File in questo prodotto:
File Dimensione Formato  
LarixsibiricaLwood_23.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/186875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact