We define a family of generalized Eulerian polynomials depending on three parameters. We prove that these polynomials have a nonnegative gamma vector, and we provide a combinatorial description of the corresponding gamma coefficients. By assigning suitable integer values to the parameters, we obtain a new expansion of the nth Eulerian polynomial over the symmetric group $\mathfrak{S}_{n-1}$, a new description of the associated gamma vector, and an identity relating the derangements of $\mathfrak{S}_{2n}$ to the alternating permutations of $\mathfrak{S}_{2n+1}$.

Generalized Eulerian Polynomials with a Nonnegative Gamma Vector

Petrullo Pasquale
;
Senato Domenico
2024-01-01

Abstract

We define a family of generalized Eulerian polynomials depending on three parameters. We prove that these polynomials have a nonnegative gamma vector, and we provide a combinatorial description of the corresponding gamma coefficients. By assigning suitable integer values to the parameters, we obtain a new expansion of the nth Eulerian polynomial over the symmetric group $\mathfrak{S}_{n-1}$, a new description of the associated gamma vector, and an identity relating the derangements of $\mathfrak{S}_{2n}$ to the alternating permutations of $\mathfrak{S}_{2n+1}$.
2024
File in questo prodotto:
File Dimensione Formato  
petrullo13.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: Versione editoriale
Dimensione 164.88 kB
Formato Adobe PDF
164.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/185075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact