We define a family of generalized Eulerian polynomials depending on three parameters. We prove that these polynomials have a nonnegative gamma vector, and we provide a combinatorial description of the corresponding gamma coefficients. By assigning suitable integer values to the parameters, we obtain a new expansion of the nth Eulerian polynomial over the symmetric group $\mathfrak{S}_{n-1}$, a new description of the associated gamma vector, and an identity relating the derangements of $\mathfrak{S}_{2n}$ to the alternating permutations of $\mathfrak{S}_{2n+1}$.
Generalized Eulerian Polynomials with a Nonnegative Gamma Vector
Petrullo Pasquale
;Senato Domenico
2024-01-01
Abstract
We define a family of generalized Eulerian polynomials depending on three parameters. We prove that these polynomials have a nonnegative gamma vector, and we provide a combinatorial description of the corresponding gamma coefficients. By assigning suitable integer values to the parameters, we obtain a new expansion of the nth Eulerian polynomial over the symmetric group $\mathfrak{S}_{n-1}$, a new description of the associated gamma vector, and an identity relating the derangements of $\mathfrak{S}_{2n}$ to the alternating permutations of $\mathfrak{S}_{2n+1}$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
petrullo13.pdf
solo utenti autorizzati
Tipologia:
Pdf editoriale
Licenza:
Versione editoriale
Dimensione
164.88 kB
Formato
Adobe PDF
|
164.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.