We study the behavior of some “truncated” Gaussian rules based on the zeros of Pollaczek-type polynomials. These formulas are stable and converge with the order of the best polynomial approximation in suitable function spaces. Moreover, we apply these results to the related Lagrange interpolation process and to prove the stability and the convergence of a Nyström method for Fredholm integral equations of the second kind. Finally, some numerical examples are shown.

Gaussian quadrature rules with exponential weights on (-1,1)

DE BONIS, Maria Carmela;MASTROIANNI, Giuseppe Maria;NOTARANGELO, INCORONATA
2012-01-01

Abstract

We study the behavior of some “truncated” Gaussian rules based on the zeros of Pollaczek-type polynomials. These formulas are stable and converge with the order of the best polynomial approximation in suitable function spaces. Moreover, we apply these results to the related Lagrange interpolation process and to prove the stability and the convergence of a Nyström method for Fredholm integral equations of the second kind. Finally, some numerical examples are shown.
2012
File in questo prodotto:
File Dimensione Formato  
DeBonisMastroianniNotarangeloNM2012.pdf

non disponibili

Tipologia: Abstract
Licenza: DRM non definito
Dimensione 648.89 kB
Formato Adobe PDF
648.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/18396
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact