BACKGROUND: Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes, the genetic cause of which is still unknown. METHODS AND RESULTS: We describe a family with a new unbalanced X;18 translocation der(X) associated with either fully attenuated or DOR phenotype in the same family. Cytogenetics and array comparative genomic hybridization (aCGH) studies have revealed the same partial Xq monosomy and partial 18q trisomy in both the 32-year-old female with DOR and the unaffected mother. The genetic analysis has defined a subtelomeric deletion spanning 13.3 Mb from Xq27.3 to -Xqter, which covers the premature ovarian failure locus 1 (POF1); and a duplication spanning 13.4 Mb, from 18q22.1 to 18qter. From a parental-origin study, we have inferred that the rearranged X chromosome is maternally derived. The Xq27 and 18q22 breakpoint regions fall in a region extremely rich in long interspersed nuclear element, a class of retrotransposons able to trigger mispairing and unusual crossovers. X-inactivation studies reveal a skewing of der(X) both in the mother and the proband. Therefore, the phenotypic expression of der(X) is fully attenuated in the fertile mother and partially attenuated in the DOR daughter. CONCLUSIONS: We report on an unbalanced maternally derived translocation (X;18)(q27;q22) with different intra-familial reproductive performances, ranging from fertility to DOR. Skewed X-inactivation seems to restore the unbalanced genetic make-up, fully silencing the 18q22 trisomy and at least in part the Xq27 monosomy. The chromosomal abnormality observed in this family supports the presence of a DOR susceptibility locus in the distal Xq region and targets the POF1 region for further investigation.

Genetic and Molecular Analysis of a new Unbalanced X/18 Rearrangement link the Diminished Ovarian Reserve disease to the distal Xq POF1 region

LIOI, Maria Brigida;
2011-01-01

Abstract

BACKGROUND: Diminished ovarian reserve (DOR) is a heterogeneous disorder causing infertility, characterized by a decreased number of oocytes, the genetic cause of which is still unknown. METHODS AND RESULTS: We describe a family with a new unbalanced X;18 translocation der(X) associated with either fully attenuated or DOR phenotype in the same family. Cytogenetics and array comparative genomic hybridization (aCGH) studies have revealed the same partial Xq monosomy and partial 18q trisomy in both the 32-year-old female with DOR and the unaffected mother. The genetic analysis has defined a subtelomeric deletion spanning 13.3 Mb from Xq27.3 to -Xqter, which covers the premature ovarian failure locus 1 (POF1); and a duplication spanning 13.4 Mb, from 18q22.1 to 18qter. From a parental-origin study, we have inferred that the rearranged X chromosome is maternally derived. The Xq27 and 18q22 breakpoint regions fall in a region extremely rich in long interspersed nuclear element, a class of retrotransposons able to trigger mispairing and unusual crossovers. X-inactivation studies reveal a skewing of der(X) both in the mother and the proband. Therefore, the phenotypic expression of der(X) is fully attenuated in the fertile mother and partially attenuated in the DOR daughter. CONCLUSIONS: We report on an unbalanced maternally derived translocation (X;18)(q27;q22) with different intra-familial reproductive performances, ranging from fertility to DOR. Skewed X-inactivation seems to restore the unbalanced genetic make-up, fully silencing the 18q22 trisomy and at least in part the Xq27 monosomy. The chromosomal abnormality observed in this family supports the presence of a DOR susceptibility locus in the distal Xq region and targets the POF1 region for further investigation.
2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/18383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact