Abstract The relevance of sustainable materials in the construction sector is undeniable, facing both environmental and economic challenges in an industry known for its substantial pollution footprint. Using these materials not only can help to mitigate ecological impact but also to enhance the efficiency and quality of construction resources, leading to better performance of built structures and promoting a more balanced and sustainable approach in construction practices. A key characteristic of sustainable materials is their reusability. Discarded materials are transformed into new resources, allowing waste with various physical and mechanical properties to be incorporated as additives in composite material matrices. This thesis investigates the potential of coconut as a sustainable material, with fieldwork conducted in Manabí, Ecuador's second-largest coconut-producing province. Despite environmental regulations, there is a lack of a coconut waste management system for proper classification and subsequent reuse. Effectively treating these wastes aligns not only with sustainability and environmental responsibility but also with the ideals of the Fourth Industrial Revolution, where technology, innovation, and sustainability converge to transform both industry and society. Using coconut waste as an emerging composite material offers a valuable solution in urban areas where such waste poses an environmental challenge. Previous studies have shown promising results in using these wastes to generate new products, such as gardening elements, crafts, and briquettes. Coconut fiber has showed excellent hydrothermal properties for green roofs, thermal insulation, and activated charcoal production, among other uses. This research aims to develop a holistic approach for integrating coconut waste into the production of new sustainable materials. It investigates the coconut's lifecycle in specific communities of Portoviejo, Rocafuerte, and Manta cantons, near the Pacific Coastline in Ecuador. A detailed characterization of coconut fiber and endocarp properties is conducted, covering chemical, physical, mechanical, morphological, and thermal aspects. Two applications of coconut fiber in composite material matrices, such as mortars and polymers, are proposed. Mechanical tests will be performed to evaluate their compressive and flexural strengths. Both qualitative and quantitative approaches were used in this study. The research process began with a bibliographic analysis to contextualize the state-of-the art. Next, the empirical study started by collecting data about the coconut's lifecycle through interviews with various stakeholders: farmers, traders, consumers, and recyclers. Findings justified the need for a deeper scientific examination of coconut waste and its potential reuse. In the second stage, attention was focused on the characterization of coconut waste, using tests like X-ray Fluorescence (XRF), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). The results provided crucial information for an experimental study to identify how coconut fiber affects the matrices of mortars and polymers. The first phase of research revealed that coconut waste is mainly incinerated by farmers, with a minimal percentage used as fertilizer. Traders typically hand over this waste to solid waste collection services, while direct consumers dispose it in public containers. Among recyclers, a minority use the waste for crafts, caulking cords, coconut substrate, and one company notably uses imported coconut fiber from India for making slope stabilizing mats, as it is financially more convenient than collecting and processing it in Manabí. The physical, mechanical, chemical, morphological, and thermal test results showed that the coconut fiber has a tubular morphology with concentric microfibrils, specific weight of 0.69 g/cm3, tensile strength of 228 MPa, elastic modulus of 3.03 GPa, significant thermal mass loss at 330 ºC, and oxides formation during calcinations at 600 ºC and 650 ºC for pozzolana compounds. The endocarp has smooth, overlapping, consolidated layers, specific weight of 1.29 g/cm3, and mass loss at 339 ºC, with calcinations at 800 ºC. Regarding the mechanical test results of the mortar matrix, it was concluded that incorporating coconut fiber enhanced flexural strength. The base mortar (MB) sample reached a strength of 1.01 MPa, while the mix with 3% coconut fiber at 5cm length achieved 1.05 MPa. In terms of compressive strength, the MB sample was 6.21 MPa, while samples with 3% fiber at 3cm length reached a strength of 5.35 MPa, showing higher compressive strength in MB. The second composite material tested was the polymer matrix, where the combination of industrial wastes of low-density polyethylene, high-density polyethylene, and polypropylene yielded favorable results with coconut fiber incorporation. Flexural strength tests on MB were 13.05 MPa, and for mortar plus 20% coconut fiber, it was 17.37 MPa; compression test results for MB were 19.31 Mpa, and for mortar with 25% fiber incorporation, the compressive strength was 21.79 MPa. These results confirmed that coconut fiber enhances tensile and compressive strengths in polymer matrices.

COCONUT WASTE AS A SUSTAINABLE MATERIAL FOR CONSTRUCTION IN MANABI / San Andrés Zevallos, Gina. - (2024 Feb 29).

COCONUT WASTE AS A SUSTAINABLE MATERIAL FOR CONSTRUCTION IN MANABI

San Andrés Zevallos, Gina
2024-02-29

Abstract

Abstract The relevance of sustainable materials in the construction sector is undeniable, facing both environmental and economic challenges in an industry known for its substantial pollution footprint. Using these materials not only can help to mitigate ecological impact but also to enhance the efficiency and quality of construction resources, leading to better performance of built structures and promoting a more balanced and sustainable approach in construction practices. A key characteristic of sustainable materials is their reusability. Discarded materials are transformed into new resources, allowing waste with various physical and mechanical properties to be incorporated as additives in composite material matrices. This thesis investigates the potential of coconut as a sustainable material, with fieldwork conducted in Manabí, Ecuador's second-largest coconut-producing province. Despite environmental regulations, there is a lack of a coconut waste management system for proper classification and subsequent reuse. Effectively treating these wastes aligns not only with sustainability and environmental responsibility but also with the ideals of the Fourth Industrial Revolution, where technology, innovation, and sustainability converge to transform both industry and society. Using coconut waste as an emerging composite material offers a valuable solution in urban areas where such waste poses an environmental challenge. Previous studies have shown promising results in using these wastes to generate new products, such as gardening elements, crafts, and briquettes. Coconut fiber has showed excellent hydrothermal properties for green roofs, thermal insulation, and activated charcoal production, among other uses. This research aims to develop a holistic approach for integrating coconut waste into the production of new sustainable materials. It investigates the coconut's lifecycle in specific communities of Portoviejo, Rocafuerte, and Manta cantons, near the Pacific Coastline in Ecuador. A detailed characterization of coconut fiber and endocarp properties is conducted, covering chemical, physical, mechanical, morphological, and thermal aspects. Two applications of coconut fiber in composite material matrices, such as mortars and polymers, are proposed. Mechanical tests will be performed to evaluate their compressive and flexural strengths. Both qualitative and quantitative approaches were used in this study. The research process began with a bibliographic analysis to contextualize the state-of-the art. Next, the empirical study started by collecting data about the coconut's lifecycle through interviews with various stakeholders: farmers, traders, consumers, and recyclers. Findings justified the need for a deeper scientific examination of coconut waste and its potential reuse. In the second stage, attention was focused on the characterization of coconut waste, using tests like X-ray Fluorescence (XRF), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). The results provided crucial information for an experimental study to identify how coconut fiber affects the matrices of mortars and polymers. The first phase of research revealed that coconut waste is mainly incinerated by farmers, with a minimal percentage used as fertilizer. Traders typically hand over this waste to solid waste collection services, while direct consumers dispose it in public containers. Among recyclers, a minority use the waste for crafts, caulking cords, coconut substrate, and one company notably uses imported coconut fiber from India for making slope stabilizing mats, as it is financially more convenient than collecting and processing it in Manabí. The physical, mechanical, chemical, morphological, and thermal test results showed that the coconut fiber has a tubular morphology with concentric microfibrils, specific weight of 0.69 g/cm3, tensile strength of 228 MPa, elastic modulus of 3.03 GPa, significant thermal mass loss at 330 ºC, and oxides formation during calcinations at 600 ºC and 650 ºC for pozzolana compounds. The endocarp has smooth, overlapping, consolidated layers, specific weight of 1.29 g/cm3, and mass loss at 339 ºC, with calcinations at 800 ºC. Regarding the mechanical test results of the mortar matrix, it was concluded that incorporating coconut fiber enhanced flexural strength. The base mortar (MB) sample reached a strength of 1.01 MPa, while the mix with 3% coconut fiber at 5cm length achieved 1.05 MPa. In terms of compressive strength, the MB sample was 6.21 MPa, while samples with 3% fiber at 3cm length reached a strength of 5.35 MPa, showing higher compressive strength in MB. The second composite material tested was the polymer matrix, where the combination of industrial wastes of low-density polyethylene, high-density polyethylene, and polypropylene yielded favorable results with coconut fiber incorporation. Flexural strength tests on MB were 13.05 MPa, and for mortar plus 20% coconut fiber, it was 17.37 MPa; compression test results for MB were 19.31 Mpa, and for mortar with 25% fiber incorporation, the compressive strength was 21.79 MPa. These results confirmed that coconut fiber enhances tensile and compressive strengths in polymer matrices.
29-feb-2024
1.1 Resumen La relevancia de los materiales sostenibles en el sector de la construcción es incuestionable, dado que enfrenta desafíos ambientales y económicos en una industria con una notable huella de contaminación. La utilización de estos materiales no solo mitiga el impacto ecológico, sino que, además, potencia la eficiencia y la calidad de los recursos constructivos, lo cual se traduce en un rendimiento más óptimo de las estructuras edificadas. De esta forma, se fomenta un enfoque más equilibrado y sustentable en la práctica de la construcción. En cuanto a la naturaleza de los materiales sostenibles, un rasgo distintivo es la capacidad de reutilización. Los materiales desechados se transforman para originar nuevos recursos, lo cual posibilita que residuos con diversas propiedades físicas, mecánicas, entre otras se incorporen como aditivos en matrices de materiales compuestos. Este trabajo investiga las potencialidades del coco como material sostenible, para lo cual se llevó a cabo un trabajo de campo en Manabí, la segunda provincia con mayor producción de coco en Ecuador, que, a pesar de la existencia de normativas ambientales, se carece de un plan de gestión de residuos de coco que permita su clasificación adecuada y posterior reutilización. El tratamiento eficaz de estos residuos no es solamente una acción alineada con la sostenibilidad y la responsabilidad ambiental, sino que también se inserta en los ideales de la Cuarta Revolución Industrial. En esta etapa, la tecnología, la innovación y la sostenibilidad convergen para transformar tanto la industria como la sociedad. Así, el empleo de residuos de coco como material compuesto emergente se erige como una solución valiosa en urbes donde dichos residuos representan un desafío ambiental. Estudios previos han manifestado resultados alentadores en la utilización de estos residuos en la generación de nuevos productos, tales como elementos de jardinería, artesanías y briquetas. Además, la fibra de coco ha mostrado excelentes propiedades higrotérmicas para techos verdes, como aislante térmico, y en la fabricación de carbón activado, entre otros usos. Este proyecto tiene como objetivos, concebir un enfoque holístico para la integración de residuos de coco en la producción de nuevos materiales sostenibles. Para ello, se investigará el ciclo de vida del coco en comunidades específicas de los cantones de Portoviejo, Rocafuerte y Manta. Se llevará a cabo una caracterización detallada de las propiedades de la fibra de coco y el endocarpio, tanto desde el punto de vista químico como físico, mecánico, morfológico y térmico. Adicionalmente, se propone dos aplicaciones de la fibra de coco en matrices de materiales compuestos como morteros y polímeros. Se efectuarán ensayos mecánicos y evaluar sus resistencias a la compresión y flexión. Para concretar este estudio, se emplearon metodologías tanto cualitativas como cuantitativas. El proceso investigativo comenzó con un análisis bibliográfico para contextualizar el estado del arte en la materia. La primera fase se enfocó en la recopilación de datos sobre el ciclo de vida del coco, mediante entrevistas a distintos actores involucrados: agricultores, comerciantes, consumidores y recicladores. Los hallazgos justificaron la necesidad de un examen científico más profundo sobre los residuos de coco y su potencial reutilización. En una segunda etapa, se centró la atención en la caracterización científica de los residuos de coco, aplicando pruebas como Fluorescencia de rayos X (FRX), Calorimetría diferencial de barrido (DSC), Análisis termogravimétrico (TGA), y Microscopía avanzada de barrido (SEM). Los resultados proporcionaron información crucial para desarrollar un estudio experimental enfocado en identificar cómo la fibra de coco influye en las matrices de morteros y polímeros. Como resultados en la primera fase de investigación reveló, entre otros hallazgos, que los residuos de coco son principalmente incinerados por los agricultores y un mínimo porcentaje es empleado como abono. Los comerciantes suelen entregar estos desechos a servicios de recolección de basura, y los consumidores depositan estos residuos en contenedores públicos. Entre los recicladores, aunque son minoría, utilizan los residuos para realizar artesanías, cordones para el calafateo, sustrato de coco y mantos estabilizadores de talud. Según los resultados de los ensayos físicos, mecánicos, químicos, morfológicos y térmicos de las fibras, comprobamos: una morfología tubular con microfibrillas concéntricas, peso específico 0.69 g/cm3 , resistencia a la tensión 228 MPa, módulo de elasticidad 3.03 GPa, comportamiento térmico con pérdidas importante de masa a 330 ºC, en las calcinaciones la obtención de óxidos, según los compuestos para puzolana a 600 ºC y 650 ºC; respecto al endocarpio, posee una morfología de capas lisas sobrepuestas y consolidadas, peso específico 1.29 g/cm3, pérdida de masa a 339 ºC y en las calcinaciones a 800 ºC. En lo correspondiente a los resultados de los ensayos mecánicos de la matriz de mortero, se concluye que la incorporación de la fibra de coco favoreció a la resistencia a la flexión, dando los siguientes resultados: la muestra de mortero base (MB) alcanza una resistencia de 1.01 MPa, mientras que la mezcla con 3% de fibra de coco y 5cm de longitud llega a 1.05 MPa; respecto a la resistencia a la compresión, la muestra de Mortero Base (MB) es 6.21MPa; y, en las muestras que se incorpora 3% fibra y una longitud de 3cm, llegó a una resistencia de 5.35 MPa, demostrando que la resistencia a la compresión es mayor en MB. El segundo material compuesto experimentado fue la matriz de polímeros, la combinación de residuos industriales de polietileno de baja densidad, polietileno de alta densidad y polipropileno, dieron resultados favorables con la incorporación de la fibra de coco. Los ensayos de resistencia a flexión en el MB fue 13.05 MPa y para el mortero con 20% de fibra de coco 17.37 MPa; respecto a los resultados de ensayo de compresión en el MB fue 19.31Mpa, y para el mortero con la incorporación de un 25% de fibra la resistencia a la compresión fue de 21,79 MPa. Según los resultados mostrados, se comprobó que la fibra de coco favorece a las resistencias a tracción y compresión en la matriz de polímeros.
Residuos de coco, mortero de cemento, matriz de polímeros, materiales compuesto.
COCONUT WASTE AS A SUSTAINABLE MATERIAL FOR CONSTRUCTION IN MANABI / San Andrés Zevallos, Gina. - (2024 Feb 29).
File in questo prodotto:
File Dimensione Formato  
TESI DI DOTTORATO GINA SAN ANDRÉS_ok (1).pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Licenza: Non definito
Dimensione 45.98 MB
Formato Adobe PDF
45.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/183135
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact