Let F be an algebraically closed field of characteristic zero, and let A be an associative unitary F-algebra graded by a group of prime order. We prove that if A is finite dimensional then the graded exponent of A exists and is an integer
On the existence of the graded exponent for finite dimensional Z_p-graded algebras
DI VINCENZO, Onofrio Mario;
2012-01-01
Abstract
Let F be an algebraically closed field of characteristic zero, and let A be an associative unitary F-algebra graded by a group of prime order. We prove that if A is finite dimensional then the graded exponent of A exists and is an integerFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2012_CMB_omDV_vN_On the existence of the graded exponent for finite dimensional Z_p-graded algebras.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
218.24 kB
Formato
Adobe PDF
|
218.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.