Let (A, ∗) be a ∗-PI algebra with involution over a field of characteristic zero and let c_m(A, ∗) denote its m-th ∗-codimension. Giambruno and Zaicev proved that, if A is finite dimensional, there exists the lim c_m(A, ∗), and it is an integer, which is called the ∗-exponent of A. As a consequence of the presence of this invariant, in a natural manner the definition of ∗-minimal algebra was introduced. Our goal in this paper is to characterize, up to ∗-PI equivalence, ∗-minimal algebras.

A characterization of *-minimal algebras with involution

DI VINCENZO, Onofrio Mario;
2011

Abstract

Let (A, ∗) be a ∗-PI algebra with involution over a field of characteristic zero and let c_m(A, ∗) denote its m-th ∗-codimension. Giambruno and Zaicev proved that, if A is finite dimensional, there exists the lim c_m(A, ∗), and it is an integer, which is called the ∗-exponent of A. As a consequence of the presence of this invariant, in a natural manner the definition of ∗-minimal algebra was introduced. Our goal in this paper is to characterize, up to ∗-PI equivalence, ∗-minimal algebras.
File in questo prodotto:
File Dimensione Formato  
omdv_es_IJM_2011.pdf

solo utenti autorizzati

Descrizione: Post-print dell'articolo accettato per la pubblicazione
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 208.16 kB
Formato Adobe PDF
208.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/18183
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact