In this paper we introduce and study a sequence of positive linear operators acting on suitable spaces of measurable functions on [0,+∞[, including L p ([0,+∞[) spaces, 1 ≤ p < +∞, as well as continuous function spaces with polynomial weights. These operators generalize the Szász–Mirakjan–Kantorovich operators and they allow to approximate (or to reconstruct) suitable measurable functions by knowing their mean values on a sequence of subintervals of [0,+∞[ that do not constitute a subdivision of it. We also give some estimates of the rates of convergence by means of suitable moduli of smoothness.
On a generalization of Szasz-Mirakjan-Kantorovich operators
LEONESSA, VITA
2013-01-01
Abstract
In this paper we introduce and study a sequence of positive linear operators acting on suitable spaces of measurable functions on [0,+∞[, including L p ([0,+∞[) spaces, 1 ≤ p < +∞, as well as continuous function spaces with polynomial weights. These operators generalize the Szász–Mirakjan–Kantorovich operators and they allow to approximate (or to reconstruct) suitable measurable functions by knowing their mean values on a sequence of subintervals of [0,+∞[ that do not constitute a subdivision of it. We also give some estimates of the rates of convergence by means of suitable moduli of smoothness.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ACML2011preprint.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
310.69 kB
Formato
Adobe PDF
|
310.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.