An automorphisms $\gamma$ of a group is inertial if $X\cap X^\g$ has finite index in both $X$ and $X^\g$ for any subgroup $X$. We study inertial automorphisms of abelian groups and give characterization of them. In particular, if the group is periodic they have property that $X^{<\gamma>}/X_{<\gamma>}$ is bounded. We also study finitely generated groups of inertial automorphisms.

Inertial automorphisms of an abelian group

RINAURO, Silvana
2012-01-01

Abstract

An automorphisms $\gamma$ of a group is inertial if $X\cap X^\g$ has finite index in both $X$ and $X^\g$ for any subgroup $X$. We study inertial automorphisms of abelian groups and give characterization of them. In particular, if the group is periodic they have property that $X^{<\gamma>}/X_{<\gamma>}$ is bounded. We also study finitely generated groups of inertial automorphisms.
2012
File in questo prodotto:
File Dimensione Formato  
Dardano_Rinauro.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 743.67 kB
Formato Adobe PDF
743.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/18145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact