We study a ramification of Lewy’s unsolvability phenomenon within the Teodorescu space $B^1_{\mathbb R} (\Omega, \mathcal{X})$ (the domain of the minimal closed extension of the Lewy operator) into a complex Fréchet space. We show that the Lewy equation $\overline{(X,Y)} (u) = (\psi^\prime \circ \mathcal{T}, 0)$ has no solution $u: \Omega \to \mathcal{X}$ of Teodorescu class $B^1$ , defined on a neighbourhood of a point $(\xi + i \eta, \tau) \in \mathbb{H}_1$ provided that $\psi \in \mathcal{D}(\overline{\partial}_t) \subset C(\mathbb{R}, \mathcal{X})$ is not real analytic at $\tau$.

On Lewy's unsolvability phenomenon

BARLETTA, Elisabetta;DRAGOMIR, Sorin
2012

Abstract

We study a ramification of Lewy’s unsolvability phenomenon within the Teodorescu space $B^1_{\mathbb R} (\Omega, \mathcal{X})$ (the domain of the minimal closed extension of the Lewy operator) into a complex Fréchet space. We show that the Lewy equation $\overline{(X,Y)} (u) = (\psi^\prime \circ \mathcal{T}, 0)$ has no solution $u: \Omega \to \mathcal{X}$ of Teodorescu class $B^1$ , defined on a neighbourhood of a point $(\xi + i \eta, \tau) \in \mathbb{H}_1$ provided that $\psi \in \mathcal{D}(\overline{\partial}_t) \subset C(\mathbb{R}, \mathcal{X})$ is not real analytic at $\tau$.
File in questo prodotto:
File Dimensione Formato  
On the Lewy's unsolvability phenomenon_DOI.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 167.91 kB
Formato Adobe PDF
167.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/18143
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact