We study contact harmonic maps, i.e. smooth maps $\phi: M \to N$ from a strictly pseudoconvex CR manifold $M$ into a contact Riemanian manifold $N$ which are critical points of the functional $E(\phi) = 1/2 \int_M \| (d \phi)_{H,H^\prime}\|^2 \theta \wedge (d \theta)^n$ and thenir generalizations. We derive the first and second variation formulae for $E$ and study stability of contact harmonic maps. Contact harmonic maps are shown to arise as boundary values of critical points $\phi \in C^\infty (\overline{\Omega), N)$ of the functional $\int_\Omega \| \Pi_H^\prime^\phi \circ \phi_*\|^2 d vol(g_\theta)$ where $\Omega \subset \mathbb{C}^{n+1}$ is a smoothly bounded strictly pseudoconvex domain endowed with the Bergman metric $g_B$.
Contact harmonic maps
DRAGOMIR, Sorin;
2012-01-01
Abstract
We study contact harmonic maps, i.e. smooth maps $\phi: M \to N$ from a strictly pseudoconvex CR manifold $M$ into a contact Riemanian manifold $N$ which are critical points of the functional $E(\phi) = 1/2 \int_M \| (d \phi)_{H,H^\prime}\|^2 \theta \wedge (d \theta)^n$ and thenir generalizations. We derive the first and second variation formulae for $E$ and study stability of contact harmonic maps. Contact harmonic maps are shown to arise as boundary values of critical points $\phi \in C^\infty (\overline{\Omega), N)$ of the functional $\int_\Omega \| \Pi_H^\prime^\phi \circ \phi_*\|^2 d vol(g_\theta)$ where $\Omega \subset \mathbb{C}^{n+1}$ is a smoothly bounded strictly pseudoconvex domain endowed with the Bergman metric $g_B$.File | Dimensione | Formato | |
---|---|---|---|
DradomirPetit_1.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
352.32 kB
Formato
Adobe PDF
|
352.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.