In the assessment of plant response to the climate changes, the effects of CO2 increase in the atmosphere and the subsequent rise of temperatures must be taken into account for their effects on crop physiology. In Mediterranean areas, a decrease of water availability and a more frequent occurrence of drought periods are expected. The objective of this study was to assess the impact of elevated CO2 concentration and high temperature on reference evapotranspiration (ETo) and crop evapotranspiration (ETc) in the Mediterranean areas. The Penman–Monteith equation was used to simulate the future changes of reference evapotranspiration (ETo) by the recalibration of the canopy resistance parameter. Besides, crop coefficients (Kc) were adjusted according to the future climate trend. Then the modified empirical model (ETc = ETo×Kc) was applied providing an effective quantification of the climate change impact on water use of irrigated crops grown in Mediterranean areas. In the studied area, water use assessment was carried out for the period from 1961 to 2006 (measured data) and for a period from 2071 until 2100 (simulated data), showing a future climatic scenario. Water and irrigation use of crops will change as a function of climate changes, thermal needs of single crops and time of the year when they grow. Climate simulation model foresees the tendency for a significant increase of temperatures and a decrease of total year rainfall with a change of their distribution. The temperature increase and the concomitant expected rainfall decrease lead to a rise of year potential water deficit. About the autumn–spring crops, as wheat, a further increase of water deficit, is not expected. On the contrary, for spring–summer crops as tomato, a significant increase of water deficit and thus of irrigation need, is foreseen. Actually, for crops growing in that period of the year, the substantial rise of evapotranspiration demand cannot be compensated by crop cycle reduction and partial stomatal closure.

Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area

LOVELLI, Stella;PERNIOLA, Michele;DI TOMMASO, TEODORO;AMATO, Mariana
2010-01-01

Abstract

In the assessment of plant response to the climate changes, the effects of CO2 increase in the atmosphere and the subsequent rise of temperatures must be taken into account for their effects on crop physiology. In Mediterranean areas, a decrease of water availability and a more frequent occurrence of drought periods are expected. The objective of this study was to assess the impact of elevated CO2 concentration and high temperature on reference evapotranspiration (ETo) and crop evapotranspiration (ETc) in the Mediterranean areas. The Penman–Monteith equation was used to simulate the future changes of reference evapotranspiration (ETo) by the recalibration of the canopy resistance parameter. Besides, crop coefficients (Kc) were adjusted according to the future climate trend. Then the modified empirical model (ETc = ETo×Kc) was applied providing an effective quantification of the climate change impact on water use of irrigated crops grown in Mediterranean areas. In the studied area, water use assessment was carried out for the period from 1961 to 2006 (measured data) and for a period from 2071 until 2100 (simulated data), showing a future climatic scenario. Water and irrigation use of crops will change as a function of climate changes, thermal needs of single crops and time of the year when they grow. Climate simulation model foresees the tendency for a significant increase of temperatures and a decrease of total year rainfall with a change of their distribution. The temperature increase and the concomitant expected rainfall decrease lead to a rise of year potential water deficit. About the autumn–spring crops, as wheat, a further increase of water deficit, is not expected. On the contrary, for spring–summer crops as tomato, a significant increase of water deficit and thus of irrigation need, is foreseen. Actually, for crops growing in that period of the year, the substantial rise of evapotranspiration demand cannot be compensated by crop cycle reduction and partial stomatal closure.
2010
File in questo prodotto:
File Dimensione Formato  
Lovelli_1.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 601.3 kB
Formato Adobe PDF
601.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/18090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 44
social impact