An extensive program of shaking table tests on 1/4-scale three-dimensional R/C frames was jointly carried out by the Department of Structure, Soil Mechanics and Engineering Geology (DiSGG) of the University of Basilicata, Italy, and the National Laboratory of Civil Engineering (LNEC), Portugal. It was aimed at evaluating the effectiveness of passive control bracing systems for the seismic retrofit of R/C frames designed for gravity loads only. Two different types of braces were considered, one based on the hysteretic behaviour of steel elements, the other on the superelastic properties of Shape Memory Alloys (SMA). Different protection strategies were pursued, in order to fully exploit the high energy dissipation capacity of steel-based devices, on one hand, and the supplemental re-centring capacity of SMA-based devices, on the other hand. The experimental results confirmed the great potentials of both strategies and of the associated devices in limiting structural damage. The retrofitted model was subjected to table accelerations as high as three times the acceleration leading the unprotected model to collapse, with no significant damage to structural elements. Moreover, the re-centring capability of the SMA-based bracing system was able to recover the undeformed shape of the frame, when it was in a near-collapse condition. In this paper the experimental behaviour of the non protected and of the protected structural models are described and compared.

Experimental behaviour of R/C frames retrofitted with dissipating and re-centring braces

CARDONE, Donatello;PONZO, Felice Carlo
2004-01-01

Abstract

An extensive program of shaking table tests on 1/4-scale three-dimensional R/C frames was jointly carried out by the Department of Structure, Soil Mechanics and Engineering Geology (DiSGG) of the University of Basilicata, Italy, and the National Laboratory of Civil Engineering (LNEC), Portugal. It was aimed at evaluating the effectiveness of passive control bracing systems for the seismic retrofit of R/C frames designed for gravity loads only. Two different types of braces were considered, one based on the hysteretic behaviour of steel elements, the other on the superelastic properties of Shape Memory Alloys (SMA). Different protection strategies were pursued, in order to fully exploit the high energy dissipation capacity of steel-based devices, on one hand, and the supplemental re-centring capacity of SMA-based devices, on the other hand. The experimental results confirmed the great potentials of both strategies and of the associated devices in limiting structural damage. The retrofitted model was subjected to table accelerations as high as three times the acceleration leading the unprotected model to collapse, with no significant damage to structural elements. Moreover, the re-centring capability of the SMA-based bracing system was able to recover the undeformed shape of the frame, when it was in a near-collapse condition. In this paper the experimental behaviour of the non protected and of the protected structural models are described and compared.
2004
File in questo prodotto:
File Dimensione Formato  
JEE_Vol 8(3)_2004.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/17637
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? ND
social impact