Chronic exposure to manganese (Mn) leads to its accumulation in the central nervous system (CNS) and neurotoxicity with not well-known mechanisms. We investigated the involvement of matrix metalloproteinase (MMP)-2 and -9 in Mn neurotoxicity in an in vivo model of rats treated through an intraperitoneal injection, for 4 weeks, with 50 mg/kg of MnCl2 in the presence or in the absence of 30 mg/kg of resveratrol (RSV). A loss of weight was observed in Mn-treated rats compared with untreated and RSV-treated rats. A progressive recovery of body weight was detected in rats co-treated with Mn and RSV. The analysis of brain homogenates indicated that RSV counteracted the Mn-induced increase in MMP-9 levels and reactive oxygen species production as well as the Mn-induced decrease in superoxide dismutase activity and glutathione content. In conclusion, Mn exposure, resulting in MMP-9 induction with mechanisms related to oxidative stress, represents a risk factor for the development of CNS diseases.

Neuroprotective Effect of Resveratrol against Manganese-Induced Oxidative Stress and Matrix Metalloproteinase-9 in an “In Vivo” Model of Neurotoxicity

Rossano, R.;
2024-01-01

Abstract

Chronic exposure to manganese (Mn) leads to its accumulation in the central nervous system (CNS) and neurotoxicity with not well-known mechanisms. We investigated the involvement of matrix metalloproteinase (MMP)-2 and -9 in Mn neurotoxicity in an in vivo model of rats treated through an intraperitoneal injection, for 4 weeks, with 50 mg/kg of MnCl2 in the presence or in the absence of 30 mg/kg of resveratrol (RSV). A loss of weight was observed in Mn-treated rats compared with untreated and RSV-treated rats. A progressive recovery of body weight was detected in rats co-treated with Mn and RSV. The analysis of brain homogenates indicated that RSV counteracted the Mn-induced increase in MMP-9 levels and reactive oxygen species production as well as the Mn-induced decrease in superoxide dismutase activity and glutathione content. In conclusion, Mn exposure, resulting in MMP-9 induction with mechanisms related to oxidative stress, represents a risk factor for the development of CNS diseases.
2024
File in questo prodotto:
File Dimensione Formato  
latronico et al. 2024.pdf

accesso aperto

Licenza: Non definito
Dimensione 5.72 MB
Formato Adobe PDF
5.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/176115
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact