Urban flood risk mitigation requires fine-scale near-real-time precipitation observations that are challenging to obtain from traditional monitoring networks. Novel data and computational techniques offer a valuable potential source of information. This study explores an unprecedented, device-independent, artificial intelligence-based system for opportunistic rainfall monitoring through deep learning models that detect rainfall presence and estimate quasi-instantaneous intensity from single pictures. Preliminary results demonstrate the models’ ability to detect a significant meteorological state corroborating the potential of non-dedicated sensors for hydrometeorological monitoring in urban areas and data-scarce regions. Future research will involve further experiments and crowdsourcing, to improve accuracy and promote public resilience.

Opportunistic Rainfall Monitoring from Single Pictures Using Artificial Intelligence

Nicla Maria Notarangelo;Raffaele Albano
;
Aurelia Sole
2022-01-01

Abstract

Urban flood risk mitigation requires fine-scale near-real-time precipitation observations that are challenging to obtain from traditional monitoring networks. Novel data and computational techniques offer a valuable potential source of information. This study explores an unprecedented, device-independent, artificial intelligence-based system for opportunistic rainfall monitoring through deep learning models that detect rainfall presence and estimate quasi-instantaneous intensity from single pictures. Preliminary results demonstrate the models’ ability to detect a significant meteorological state corroborating the potential of non-dedicated sensors for hydrometeorological monitoring in urban areas and data-scarce regions. Future research will involve further experiments and crowdsourcing, to improve accuracy and promote public resilience.
File in questo prodotto:
File Dimensione Formato  
environsciproc-21-00035.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 463.81 kB
Formato Adobe PDF
463.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/175875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact