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Abstract: Urban flood risk mitigation requires fine-scale near-real-time precipitation observations
that are challenging to obtain from traditional monitoring networks. Novel data and computational
techniques offer a valuable potential source of information. This study explores an unprecedented,
device-independent, artificial intelligence-based system for opportunistic rainfall monitoring through
deep learning models that detect rainfall presence and estimate quasi-instantaneous intensity from
single pictures. Preliminary results demonstrate the models’ ability to detect a significant meteorolog-
ical state corroborating the potential of non-dedicated sensors for hydrometeorological monitoring in
urban areas and data-scarce regions. Future research will involve further experiments and crowd-
sourcing, to improve accuracy and promote public resilience.

Keywords: opportunistic rainfall monitoring; camera-based rainfall monitoring; artificial intelligence;
deep learning; convolutional neural networks; single image classification; smart city

1. Introduction

In the last 50 years, flooding has been the most common and widespread natural dis-
aster [1]. Climate changes can exacerbate extreme precipitation events [2], heightening the
flood risk, especially in urban areas where impervious surfaces alter natural hydrological
response [3]. Fine-scaled and near real-time rain observations are essential to assess the
rainfall-runoff response in urban areas [4] and therefore the risk scenarios and alerts for
exposed population [5]. The dedicated monitoring networks—from in situ devices (rain
gauges, disdrometers) and remote sensors (radars, satellites)—differ in spatio-temporal
representativeness and availability both regionally and temporally, thus require additional
information to fill gaps [4].

In this context, newly available data sources and computational techniques offer
enormous potential in risk understanding, analysis, forecasting, and warning [5]. Repur-
posing data that are continuously being produced can yield useful information so that
non-dedicated devices can serve as low-cost “opportunistic” hydrological sensors [4].

This study explores the potential and limitations of hydrometeorological monitoring
using generic consumer cameras as smart, non-traditional, opportunistic sensors.

2. Materials and Methods
2.1. Rainfall and Computer Vision

Digital pictures and videos are affected by weather conditions, in particular by pre-
cipitation. In fact, the rainfall produces local variations in the pixel’s intensity value of
raster images depending on the following: raindrops characteristics (shape, size, velocity,
density), camera parameters (exposure time, F-number, depth of field, etc.), and environ-
ment settings (scene brightness, background, etc.) [6]. Rain-induced artifacts reduce the
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performance of computer vision (CV) systems, thus several rain detection and removal
techniques were developed to improve algorithms robustness in adverse weather condi-
tions. Publications that concentrate on video-frame sequences adopt both classical CV and
deep learning (DL) techniques—whereas studies that use single images adopt mainly DL-
based methods. Instead, a smaller body of literature is concerned with meteo-hydrological
purposes. Machine earning (ML) and DL methods have become the standard for classifying
weather conditions from single outdoor images (e.g., sunny, cloudy, snowy, rainy, and
foggy [7]). Rain measurement methods are based on classical image processing algorithms
and exploit temporal information derived from video-frame sequences thus presenting
stringent acquisition requirements (time step, device settings, resolution, etc.). For an
overview of existing techniques, the reader is directed to [8].

All studies support the notion that cameras can function as rainfall sensors. However,
such methods remain narrow in focus using only one of the following specific image
sources at one time: vehicle-mounted cameras; surveillance cameras; outdoor scenes; and
adjustable cameras [8].

An effective monitoring network must maximize sensors redundancy to improve
accuracy and reliability and, at the same time, must minimize processed data amount
to reduce computational resources and time. Thus, our research approach hinges on
the following: application simplicity and readiness; adherence to the perceptual reality;
cost-effectiveness.

As opposed to existing works, our methodology exploits general-purpose cameras
(e.g., smartphones, surveillance cameras, dashcams, etc.) without requiring parameter
setting, timeline shots, or videos. Using DL models based on transfer learning (TL) with
convolutional neural networks (CNNs), our method can be seen as a two-stage process:

1. Detection task: the CNN descries rainfall presence through a binary classification;
2. Estimation task: the CNN estimates the quasi-instantaneous rainfall intensity through

a multi-class classification;

A CNN-based approach was chosen since it is the state-of-art among other image
recognition methods [9]. Contrary to traditional CV techniques, CNNs avoid the problem
of manually engineered feature descriptors since such algorithms recognize visual patterns
directly in images, learning automatically the most salient features [9,10].

Rain-induced visual effects are complex and often inconspicuous [6]. Furthermore,
public big datasets are lacking and data creation is challenging. The non-triviality of the
task and the size of available data drove the choice to exploit the common visual semantics
of images by TL strategies combining fine-tuning and freezing layers [9].

2.2. Dataset and Model Setup

Datasets for training, validation, and test (ratio of 60:20:20) mimic real-world scenarios.
Different sources have been combined following the criteria of availability, weather condi-
tions representativeness, location, and lightning conditions diversity. Each input image
was paired with exactly one output label describing the rain class.

For the binary classification [8], the dataset included 4788 images—crowdsourced im-
ages from Image2Weather set [7]; images from dashcams moving around Tokyo metropoli-
tan area from 19 August 2017 for 48 h (©NIED) coupled with rainfall rates retrieved from
XRAIN multiparameter radar (©NIED) [11] by capture time and GPS location (threshold
4 mm/h); pictures taken during experiments in the NIED Large-scale Rainfall Simula-
tor located in Tsukuba (Japan) with different devices (Canon XC10, Sony DSC-RX10M3,
Olympus TG-2, XiaoYI YDXJ 2, XiaoMi MI8) coupled with the nominal values of produced
intensity ranging from 20 mm/h to 150 mm/h.

For the multiclass classification, the dataset included 55,600 images from: dashcams
moving around Tokyo metropolitan area from 19 August 2017 for 48 h and in several
Japanese prefectures from 8 July 2017 to 19 June 2018 (©NIED), coupled with XRAIN
rainfall rates (©NIED) [11] by time and location; experiments in the NIED Simulator
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coupled with the nominal produced intensity (from 20 mm/h to 150 mm/h). Rain rates
were binned into 6 non-overlapping classes.

Using a TL approach, the VGG16 network [12] (Figure 1)—pre-trained on the large-
scale dataset ImageNet—was employed as convolutional base because of its generality and
the portability of learned features [9].
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Figure 1. VGG16 model architecture.

To mitigate overfitting, different regularization techniques were adopted during train-
ing and validation phases, such as holdout train-valid-test data split; training data augmen-
tation; dropout; adaptive learning rate; small batch training; early stopping; etc.

The models were entirely implemented with open-source tools, namely R language
with RStudio using Keras framework and Tensorflow engine backend [9].

3. Results

To evaluate unbiasedly the predictive skills, the test sets were exposed to the models
trained as described. Each test set (holdout set) was locked away completely during the
training and evaluation steps [9]. The binary prototype was deployed in a real-world
environment in Matera (Italy) in [8], showing great robustness and portability, contrary to
the other algorithms [8]. The rainfall estimator presented the best performances with no-
rain and heavy rainfall (the most critical condition for urban flood risk). Table 1 shows the
overall metrics; the obtained classifications are significantly better than random predictions
in both models. The non-informative accuracy values correspond to 50% for a binary
classification and 16, 67% for a balanced 6-way classification. F1 score and Cohen’s kappa
shows consistency, such metrics considers the balance of recall and precision and compare
observed accuracy with an expected accuracy (random chance), respectively.

Table 1. Performance metrics.

Metric 1 Binary Model 2 Multiclass
Model

Reference
Values

Overall accuracy (TP+TN)
(TP+FP+FN+TN)

85.28% 77.71% worst = 0%
85.13% best = 100%

F1 score TP
TP+0.5(FP+FN)

0.8600 0.73 3 worst = 0
0.8482 best = 1

Cohen’s kappa po−pe
1−pe

0.7057 0.7095 worst = 0
0.6669 best = 1

1 True Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN); po observed agreement
and pe hypothetical probability of chance agreement. 2 Test set and Deployment set. 3 macro-averaged.

4. Discussion—Conclusions

This study presented a prototyping method for smart opportunistic near real-time
rainfall monitoring in urban areas. Starting from the authors’ previous work [8], it repre-
sents an update of an Artificial Intelligence-based approach to gather rainfall observations
from single images shot in very heterogeneous conditions.
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The results achieved by the models test and deployment [8] proved that our system
can provide approximated but robust near-real-time precipitation observations. In compar-
ison with algorithms based on frame sequences or video, our single-image classification
algorithms process less data volume and are more robust in urban scenarios where the
background contains non-static elements, such as moving pedestrians or vehicles, as they
don’t depend on background subtraction techniques.

The major limitation concerns the approximations inherent in the following output types:
rainfall presence and intensity ranges. Another limitation can stem from visual ambiguities
in scenes that are also misleading for human perception. However, redundant observations
from a dense network with many inaccurate nodes can enhance overall performances.

Our methodology offers an expeditious operative opportunistic sensors system in-
tending not to substitute, but instead to support traditional measurement methods. The
readiness level, cost-effectiveness, and limited operational requirements allow an easy
implementation by exploiting pre-existent devices. Hence, observations retrieved from
camera-based opportunistic sensors can effectively complement dedicated rainfall obser-
vational methods especially in areas where the traditional monitoring networks is sparse,
such as urban areas but also low- or lower-middle-income countries.

Future research will involve further experiments and crowdsourcing, to improve
accuracy and at the same time promote public resilience through a smart city perspective.
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