N-Heterocyclic carbene (NHC) metal complexes are attracting scientists' interest as an alluring class of metallodrugs. Indeed, the versatile functionalization of NHC ligands makes them optimal scaffolds to be developed in medicinal chemistry. Besides, amino acids are great biological ligands for metals, such as silver and gold, even though their use is still under-investigated. Aiming to shed light on the anticancer properties of this kind of complex, we investigated a series of silver and gold complexes, stabilized by NHC ligands and bearing carboxylate salts of tert-butyloxy-carbonyl (Boc)-N-protected glycine and l-phenyl-alanine as anionic ligands. The most active complexes, AuM1Gly and AuM1Phe, powerfully affect the growth of MDA-MB-231 breast cancer cells, with IC50 values in the low nanomolar range. Further studies demonstrated the blockade of the human topoisomerase I activity and actin polymerization reaction at 0.001 mu M. These unique features make these complexes very interesting and worthy to be used for future in vivo studies.

NHC-Ag(I) and NHC-Au(I) Complexes with N-Boc-Protected α-Amino Acidate Counterions Powerfully Affect the Growth of MDA-MB-231 Cells

Mariconda, Annaluisa
;
2023-01-01

Abstract

N-Heterocyclic carbene (NHC) metal complexes are attracting scientists' interest as an alluring class of metallodrugs. Indeed, the versatile functionalization of NHC ligands makes them optimal scaffolds to be developed in medicinal chemistry. Besides, amino acids are great biological ligands for metals, such as silver and gold, even though their use is still under-investigated. Aiming to shed light on the anticancer properties of this kind of complex, we investigated a series of silver and gold complexes, stabilized by NHC ligands and bearing carboxylate salts of tert-butyloxy-carbonyl (Boc)-N-protected glycine and l-phenyl-alanine as anionic ligands. The most active complexes, AuM1Gly and AuM1Phe, powerfully affect the growth of MDA-MB-231 breast cancer cells, with IC50 values in the low nanomolar range. Further studies demonstrated the blockade of the human topoisomerase I activity and actin polymerization reaction at 0.001 mu M. These unique features make these complexes very interesting and worthy to be used for future in vivo studies.
2023
File in questo prodotto:
File Dimensione Formato  
P66 ACS Chem Med AA_NHC cor 2023.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Versione editoriale
Dimensione 5.81 MB
Formato Adobe PDF
5.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/174556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact