We investigate the stability of hole polarons at the rutile surface induced by electronegative adsorbates in the intermediate steps of the oxygen evolution reaction through hybrid density functional calculations. Applying the computational hydrogen electrode method, we find that hole polarons reduce the overpotential of the reaction-determining step leading to good agreement with experiment. The stability of the polarons is confirmed at the hydrated surface through a free energy study involving the explicit solvent. The occurrence of surface hole polarons is unrelated to the scaling relationships and offers an additional handle in the search for improved catalysts.

Surface Polarons Reducing Overpotentials in the Oxygen Evolution Reaction

Ambrosio F.;
2018-01-01

Abstract

We investigate the stability of hole polarons at the rutile surface induced by electronegative adsorbates in the intermediate steps of the oxygen evolution reaction through hybrid density functional calculations. Applying the computational hydrogen electrode method, we find that hole polarons reduce the overpotential of the reaction-determining step leading to good agreement with experiment. The stability of the polarons is confirmed at the hydrated surface through a free energy study involving the explicit solvent. The occurrence of surface hole polarons is unrelated to the scaling relationships and offers an additional handle in the search for improved catalysts.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/174223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 42
social impact