A graph G has the Perfect-Matching-Hamiltonian property (PMH-property) if for each one of its perfect matchings, there is another perfect matching of G such that the union of the two perfect matchings yields a Hamiltonian cycle of G. The study of graphs that have the PMH-property, initiated in the 1970s by Las Vergnas and Haggkvist, combines three well-studied properties of graphs, namely matchings, Hamiltonicity and edge-colourings. In this work, we study these concepts for cubic graphs in an attempt to characterise those cubic graphs for which every perfect matching corresponds to one of the colours of a proper 3-edge-colouring of the graph. We discuss that this is equivalent to saying that such graphs are even-2-factorable (E2F), that is, all 2-factors of the graph contain only even cycles. The case for bipartite cubic graphs is trivial, since if G is bipartite then it is E2F. Thus, we restrict our attention to non-bipartite cubic graphs. A sufficient, but not necessary, condition for a cubic graph to be E2F is that it has the PMH-property. The aim of this work is to introduce an infinite family of E2F non-bipartite cubic graphs on two parameters, which we coin papillon graphs, and determine the values of the respective parameters for which these graphs have the PMH-property or are just E2F. We also show that no two papillon graphs with different parameters are isomorphic.

Perfect matchings, Hamiltonian cycles and edge-colourings in a class of cubic graphs

Marien Abreu;Domenico Labbate;
2023-01-01

Abstract

A graph G has the Perfect-Matching-Hamiltonian property (PMH-property) if for each one of its perfect matchings, there is another perfect matching of G such that the union of the two perfect matchings yields a Hamiltonian cycle of G. The study of graphs that have the PMH-property, initiated in the 1970s by Las Vergnas and Haggkvist, combines three well-studied properties of graphs, namely matchings, Hamiltonicity and edge-colourings. In this work, we study these concepts for cubic graphs in an attempt to characterise those cubic graphs for which every perfect matching corresponds to one of the colours of a proper 3-edge-colouring of the graph. We discuss that this is equivalent to saying that such graphs are even-2-factorable (E2F), that is, all 2-factors of the graph contain only even cycles. The case for bipartite cubic graphs is trivial, since if G is bipartite then it is E2F. Thus, we restrict our attention to non-bipartite cubic graphs. A sufficient, but not necessary, condition for a cubic graph to be E2F is that it has the PMH-property. The aim of this work is to introduce an infinite family of E2F non-bipartite cubic graphs on two parameters, which we coin papillon graphs, and determine the values of the respective parameters for which these graphs have the PMH-property or are just E2F. We also show that no two papillon graphs with different parameters are isomorphic.
2023
File in questo prodotto:
File Dimensione Formato  
amc_2672.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Creative commons
Dimensione 468.65 kB
Formato Adobe PDF
468.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/173955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact