Enceladus is a prime target in the search for life in our Solar System, having an active plume that is likely to be connected to a large liquid water sub-surface ocean. Using the sensitive near-infrared spectograph instrument on board the James Webb Space Telescope, we searched for organic compounds and characterized the plume’s composition and structure. The observations directly sample the fluorescence emissions of H2O and reveal an extraordinarily extensive plume (up to 10,000 km or 40 Enceladus radii) at cryogenic temperatures (25 K) embedded in a large bath of emission originating from Enceladus’ torus. Intriguingly, the observed outgassing rate (300 kg s−1) is similar to that derived from close-up observations with Cassini 15 years ago, and the torus density is consistent with previous spatially unresolved measurements with Herschel 13 years ago, which indicates that the vigour of gas eruption from Enceladus has been relatively stable over decadal timescales. This level of activity is sufficient to maintain a derived column density of 4.5 × 1017 m−2 for the embedding equatorial torus, and establishes Enceladus as the prime source of water across the Saturnian system. We performed searches for several non-water gases (CO2, CO, CH4, C2H6, CH3OH), but none were identified in the spectra. On the surface of the trailing hemisphere, we observe strong H2O ice features, including its crystalline form, yet we do not recover CO2, CO or NH3 ice signatures from these observations. As we prepare to send new spacecraft into the outer Solar System, these observations demonstrate the unique ability of the James Webb Space Telescope to provide critical support for the exploration of distant icy bodies and cryovolcanic plumes.

JWST molecular mapping and characterization of Enceladus’ water plume feeding its torus

Liuzzi G.
Writing – Review & Editing
;
2023-01-01

Abstract

Enceladus is a prime target in the search for life in our Solar System, having an active plume that is likely to be connected to a large liquid water sub-surface ocean. Using the sensitive near-infrared spectograph instrument on board the James Webb Space Telescope, we searched for organic compounds and characterized the plume’s composition and structure. The observations directly sample the fluorescence emissions of H2O and reveal an extraordinarily extensive plume (up to 10,000 km or 40 Enceladus radii) at cryogenic temperatures (25 K) embedded in a large bath of emission originating from Enceladus’ torus. Intriguingly, the observed outgassing rate (300 kg s−1) is similar to that derived from close-up observations with Cassini 15 years ago, and the torus density is consistent with previous spatially unresolved measurements with Herschel 13 years ago, which indicates that the vigour of gas eruption from Enceladus has been relatively stable over decadal timescales. This level of activity is sufficient to maintain a derived column density of 4.5 × 1017 m−2 for the embedding equatorial torus, and establishes Enceladus as the prime source of water across the Saturnian system. We performed searches for several non-water gases (CO2, CO, CH4, C2H6, CH3OH), but none were identified in the spectra. On the surface of the trailing hemisphere, we observe strong H2O ice features, including its crystalline form, yet we do not recover CO2, CO or NH3 ice signatures from these observations. As we prepare to send new spacecraft into the outer Solar System, these observations demonstrate the unique ability of the James Webb Space Telescope to provide critical support for the exploration of distant icy bodies and cryovolcanic plumes.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/173846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact