Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
ITER Diagnostic Residual Gas Analyzer (DRGA) will measure the distribution of gas species, i.e., deu-terium (D), tritium (T), and impurities, in the divertor exhaust stream and in the plasma periphery, with time resolution relevant to fusion plasma-wall particle dynamics. The uniqueness of the DRGA, over previous implementations of plasma dynamics residual gas analysis, is an integrated approach, combining mass and low-temperature plasma-activated optical spectroscopy, in a differentially pumped analysis station. A further unique feature of the ITER divertor-specific DRGA is an similar to 8-m separation of the analysis station from the sampled pumping duct, while still maintaining a similar to 1-s response time for hydrogen isotopic concentrations. ITER DRGA final design activities are strongly benefiting from testing of prototypical DRGA components and methods on present fusion devices, most currently on JET and W7-X. DRGA systems are implemented on both these devices and include sensors (and pumping methods) that are directly relevant to the ITER DRGA design. The recent JET-DTE2 campaign has provided the first experience on operating the combined ITER DRGA sensors with D-T plasmas. While enhancing system design for ITER, this experience on operating devices has also revealed additional engineering challenges, which further guide the continuing final design project. Meanwhile, the recent determination that the ITER DRGA, with slight optimization, will resolve the helium isotopes well enough to support an ITER pre-DT, He-3-based heating scheme, has greatly increased ITER Research Program interest in the DRGA and its implementation well ahead of the DT phase.
Developments and Challenges in the Design of the ITER DRGA
ITER Diagnostic Residual Gas Analyzer (DRGA) will measure the distribution of gas species, i.e., deu-terium (D), tritium (T), and impurities, in the divertor exhaust stream and in the plasma periphery, with time resolution relevant to fusion plasma-wall particle dynamics. The uniqueness of the DRGA, over previous implementations of plasma dynamics residual gas analysis, is an integrated approach, combining mass and low-temperature plasma-activated optical spectroscopy, in a differentially pumped analysis station. A further unique feature of the ITER divertor-specific DRGA is an similar to 8-m separation of the analysis station from the sampled pumping duct, while still maintaining a similar to 1-s response time for hydrogen isotopic concentrations. ITER DRGA final design activities are strongly benefiting from testing of prototypical DRGA components and methods on present fusion devices, most currently on JET and W7-X. DRGA systems are implemented on both these devices and include sensors (and pumping methods) that are directly relevant to the ITER DRGA design. The recent JET-DTE2 campaign has provided the first experience on operating the combined ITER DRGA sensors with D-T plasmas. While enhancing system design for ITER, this experience on operating devices has also revealed additional engineering challenges, which further guide the continuing final design project. Meanwhile, the recent determination that the ITER DRGA, with slight optimization, will resolve the helium isotopes well enough to support an ITER pre-DT, He-3-based heating scheme, has greatly increased ITER Research Program interest in the DRGA and its implementation well ahead of the DT phase.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/173818
Citazioni
ND
3
2
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.