A novel and sustainability-oriented approach to the design of large-aperture iron-dominated magnets is proposed, focusing on its application to charged particle momentum detection in high-energy experimental physics. As compared to classical design techniques, a broader number of goals and constraints is taken into account, considering jointly the detection performance, the minimization of both the electrical power and magnet size, and the electromagnetic efficiency. A case study is considered for the detector magnet of a specific experiment, where the optimal design is pursued with semi-analytical tools, duly introducing the main quantities' scaling laws in analytical form and successively validating the results with 3D numerical tools. A solution at higher energy efficiency is obtained, as compared to a more traditional design point of view. The proposed methodology can be fruitfully employed also in the design of magnets with a reduced ecological footprint in a number of other industrial and medical applications.

Power-Efficient Design of Large-Aperture Magnets for High-Energy Physics

Fresa, R
Investigation
;
2023-01-01

Abstract

A novel and sustainability-oriented approach to the design of large-aperture iron-dominated magnets is proposed, focusing on its application to charged particle momentum detection in high-energy experimental physics. As compared to classical design techniques, a broader number of goals and constraints is taken into account, considering jointly the detection performance, the minimization of both the electrical power and magnet size, and the electromagnetic efficiency. A case study is considered for the detector magnet of a specific experiment, where the optimal design is pursued with semi-analytical tools, duly introducing the main quantities' scaling laws in analytical form and successively validating the results with 3D numerical tools. A solution at higher energy efficiency is obtained, as compared to a more traditional design point of view. The proposed methodology can be fruitfully employed also in the design of magnets with a reduced ecological footprint in a number of other industrial and medical applications.
2023
File in questo prodotto:
File Dimensione Formato  
sustainability-15-10987.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 4.24 MB
Formato Adobe PDF
4.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/173816
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact