We study the geometry of the groups SL(2,qt) and Sp(2m,qt), m,t⩾2, q even, in their twisted tensor product representation. We construct families of complete partial ovoids of hyperbolic quadrics in PG(2t−1,q), all attaining the Blokhuis–Moorhouse bound. We identify the stabilizers of the complete partial ovoids
Twisted tensor product group embeddings and complete partial ovoids on quadrics in PG(2^t-1,q).
COSSIDENTE, Antonio;
2004-01-01
Abstract
We study the geometry of the groups SL(2,qt) and Sp(2m,qt), m,t⩾2, q even, in their twisted tensor product representation. We construct families of complete partial ovoids of hyperbolic quadrics in PG(2t−1,q), all attaining the Blokhuis–Moorhouse bound. We identify the stabilizers of the complete partial ovoidsFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
article.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
245.24 kB
Formato
Adobe PDF
|
245.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.