We study the geometry of the groups SL(2,qt) and Sp(2m,qt), m,t⩾2, q even, in their twisted tensor product representation. We construct families of complete partial ovoids of hyperbolic quadrics in PG(2t−1,q), all attaining the Blokhuis–Moorhouse bound. We identify the stabilizers of the complete partial ovoids

Twisted tensor product group embeddings and complete partial ovoids on quadrics in PG(2^t-1,q).

COSSIDENTE, Antonio;
2004

Abstract

We study the geometry of the groups SL(2,qt) and Sp(2m,qt), m,t⩾2, q even, in their twisted tensor product representation. We construct families of complete partial ovoids of hyperbolic quadrics in PG(2t−1,q), all attaining the Blokhuis–Moorhouse bound. We identify the stabilizers of the complete partial ovoids
File in questo prodotto:
File Dimensione Formato  
article.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 245.24 kB
Formato Adobe PDF
245.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/1719
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact