Reactions of the cationic complex ions [PtMe(Me2SO)(PP)]+ (PP = dppf (1,1-bis(diphenylphosphino)ferrocene) and dppe (1,2-bis(diphenylphosphino)ethane)) with 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin (TpyP) led to the formation of the symmetrical tetraplatinated porphyrin complexes, [PtMe(PP)]4TpyP·X4 (PP = dppf, X = CF3SO3 −, 3, and PP = dppe, X = BF4 −, 5) containing the organometallic fragment {PtMe(PP)}. The precursor sulfoxide platinum complexes [PtMe(Me2SO)(dppf)]CF3SO3, 2 and [PtMe(Me2SO)(dppe)]BF4, 4, were prepared by halide abstraction from [PtMeCl(dppf)], 1, and by controlled protonolysis of [PtMe2(dppe)] respectively, in the presence of a small amount of dimethyl sulfoxide. All these starting platinum(II) compounds, as well as the porphyrin derivatives 3 and 5, were fully characterized through elemental analysis, 1H NMR mono- and bidimensional, 31P{1H}, 31P–1H HMBC, UV/Vis absorption and photophysical measurements. The X-ray crystal structure of complex 1 has been determined. In order to ascertain the electronic influence of ferrocene, the spectroscopic and redox properties of 3 were compared with those of TPyP and of the analogous 5. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), 1H and 31P NMR data, and UV/Vis data, all suggest a certain degree of communication between the central porphyrin and the peripheral hetero-bimetallic fragments. In contrast, no detectable interaction among these peripheral groups seem to come into play. Unlikely from the porphyrin derivative 5, formation of well defined fluorescent mesoscopic ring structures was easily achieved by simple evaporation from diluted dichloromethane solutions of 3.

Platinum(II) Complexes Bearing 1,1'-bis(diphenylphosphino)ferrocene as Building Blocks for Functionalized Redox Active Porphyrins

RICCIARDI, Giampaolo;BELVISO, Sandra;
2006

Abstract

Reactions of the cationic complex ions [PtMe(Me2SO)(PP)]+ (PP = dppf (1,1-bis(diphenylphosphino)ferrocene) and dppe (1,2-bis(diphenylphosphino)ethane)) with 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin (TpyP) led to the formation of the symmetrical tetraplatinated porphyrin complexes, [PtMe(PP)]4TpyP·X4 (PP = dppf, X = CF3SO3 −, 3, and PP = dppe, X = BF4 −, 5) containing the organometallic fragment {PtMe(PP)}. The precursor sulfoxide platinum complexes [PtMe(Me2SO)(dppf)]CF3SO3, 2 and [PtMe(Me2SO)(dppe)]BF4, 4, were prepared by halide abstraction from [PtMeCl(dppf)], 1, and by controlled protonolysis of [PtMe2(dppe)] respectively, in the presence of a small amount of dimethyl sulfoxide. All these starting platinum(II) compounds, as well as the porphyrin derivatives 3 and 5, were fully characterized through elemental analysis, 1H NMR mono- and bidimensional, 31P{1H}, 31P–1H HMBC, UV/Vis absorption and photophysical measurements. The X-ray crystal structure of complex 1 has been determined. In order to ascertain the electronic influence of ferrocene, the spectroscopic and redox properties of 3 were compared with those of TPyP and of the analogous 5. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), 1H and 31P NMR data, and UV/Vis data, all suggest a certain degree of communication between the central porphyrin and the peripheral hetero-bimetallic fragments. In contrast, no detectable interaction among these peripheral groups seem to come into play. Unlikely from the porphyrin derivative 5, formation of well defined fluorescent mesoscopic ring structures was easily achieved by simple evaporation from diluted dichloromethane solutions of 3.
File in questo prodotto:
File Dimensione Formato  
Dalton_2006_2551.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 235.32 kB
Formato Adobe PDF
235.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/16929
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact