Although salmonellosis, an infectious disease, is a significant global healthcare burden, there are no Salmonella-specific vaccines or therapeutics for humans. Motivated by our finding that FraB, a Salmonella deglycase responsible for fructose-asparagine catabolism, is a viable drug target, we initiated experimental and computational efforts to identify inhibitors of FraB. To this end, our recent high-throughput screening initiative yielded almost exclusively uncompetitive inhibitors of FraB. In parallel with this advance, we report here how a separate structural and computational biology investigation of FrlB, a FraB paralog, led to the serendipitous discovery that 2-deoxy-6-phosphogluconate is a competitive inhibitor of FraB (K-I similar to 3 mu M). However, this compound was ineffective in inhibiting the growth of Salmonella in a liquid culture. In addition to poor uptake, cellular metabolic transformations by a Salmonella dehydrogenase and different phosphatases likely undermined the efficacy of 2-deoxy-6-phosphogluconate in live-cell assays. These insights inform our ongoing efforts to synthesize non-hydrolyzable/-metabolizable analogs of 2-deoxy-6-phosphogluconate. We showcase our findings largely to (re)emphasize the role of serendipity and the importance of multi-pronged approaches in drug discovery.

Serendipitous Discovery of a Competitive Inhibitor of FraB, a Salmonella Deglycase and Drug Target

Capua, Angela Di;
2022-01-01

Abstract

Although salmonellosis, an infectious disease, is a significant global healthcare burden, there are no Salmonella-specific vaccines or therapeutics for humans. Motivated by our finding that FraB, a Salmonella deglycase responsible for fructose-asparagine catabolism, is a viable drug target, we initiated experimental and computational efforts to identify inhibitors of FraB. To this end, our recent high-throughput screening initiative yielded almost exclusively uncompetitive inhibitors of FraB. In parallel with this advance, we report here how a separate structural and computational biology investigation of FrlB, a FraB paralog, led to the serendipitous discovery that 2-deoxy-6-phosphogluconate is a competitive inhibitor of FraB (K-I similar to 3 mu M). However, this compound was ineffective in inhibiting the growth of Salmonella in a liquid culture. In addition to poor uptake, cellular metabolic transformations by a Salmonella dehydrogenase and different phosphatases likely undermined the efficacy of 2-deoxy-6-phosphogluconate in live-cell assays. These insights inform our ongoing efforts to synthesize non-hydrolyzable/-metabolizable analogs of 2-deoxy-6-phosphogluconate. We showcase our findings largely to (re)emphasize the role of serendipity and the importance of multi-pronged approaches in drug discovery.
2022
File in questo prodotto:
File Dimensione Formato  
pathogens-11-01102-v2.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/168115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact