We build a variational theory of geodesics of the Tanaka-Webster connection $\nabla$ on a strictly pseudoconvex CR manifold $M$. Given a contact form $\theta$ on $M$ such that $(M , \theta)$ has nonpositive pseudohermitian sectional curvature ($k_\theta (\sigma ) \leq 0$) we show that $(M, \theta)$ has no horizontally conjugate points. Moreover, if $(M, \theta)$ is a Sasakian manifold such that $k_\theta (\sigma) \geq k_0 >0$ then we show that the distance between any two consecutive conjugate points on a lengthy geodesic of $\nabla$ is at most $\pi/(2 \sqrt{k_0})$. We obtain the first and second variation formulae for the Riemannian length of a curve in $M$ and show that in general geodesics of $\nabla$ admitting horizontally conjugate points do not realize the Riemannian distance.

Jacobi fields of the Tanaka-Webster connection on Sasakian manifolds

BARLETTA, Elisabetta;DRAGOMIR, Sorin
2006-01-01

Abstract

We build a variational theory of geodesics of the Tanaka-Webster connection $\nabla$ on a strictly pseudoconvex CR manifold $M$. Given a contact form $\theta$ on $M$ such that $(M , \theta)$ has nonpositive pseudohermitian sectional curvature ($k_\theta (\sigma ) \leq 0$) we show that $(M, \theta)$ has no horizontally conjugate points. Moreover, if $(M, \theta)$ is a Sasakian manifold such that $k_\theta (\sigma) \geq k_0 >0$ then we show that the distance between any two consecutive conjugate points on a lengthy geodesic of $\nabla$ is at most $\pi/(2 \sqrt{k_0})$. We obtain the first and second variation formulae for the Riemannian length of a curve in $M$ and show that in general geodesics of $\nabla$ admitting horizontally conjugate points do not realize the Riemannian distance.
2006
File in questo prodotto:
File Dimensione Formato  
Jacobi fields of the Tanaka-Webster connection on Sasakian manifolds.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 359.71 kB
Formato Adobe PDF
359.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/16748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact