We improve on the lower bound of the maximum number of planes of PG(8, q) mutually intersecting in at most one point leading to the following lower bound: A(q) (9, 4; 3) >= q(12) + 2q(8) + 2q(7) + q(6) + q(5) + q(4) + 1. We also construct two new nonequivalent (6, (q(3) - 1)(q(2) + q + 1), 4; 3) q-constant dimension subspace orbit-codes.

Subspace code constructions

Cossidente A.
;
Marino G.;Pavese F.
2022-01-01

Abstract

We improve on the lower bound of the maximum number of planes of PG(8, q) mutually intersecting in at most one point leading to the following lower bound: A(q) (9, 4; 3) >= q(12) + 2q(8) + 2q(7) + q(6) + q(5) + q(4) + 1. We also construct two new nonequivalent (6, (q(3) - 1)(q(2) + q + 1), 4; 3) q-constant dimension subspace orbit-codes.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/167174
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact