Let L be a σ-complete D-lattice and BV the AL-space of all realvalued, null in zero, functions on L of bounded variation. We prove the existence of a continuous Aumann-Shapley operator φ on the closed subspace of BV generated by powers of nonatomic σ-additive positive modular measures on L. The integral representation of φ on a class of functions that correspond to measure games is also exhibited.

Positive operators à la Aumann-Shapley on spaces of functions on D-lattices

AVALLONE, Anna;VITOLO, Paolo
2006-01-01

Abstract

Let L be a σ-complete D-lattice and BV the AL-space of all realvalued, null in zero, functions on L of bounded variation. We prove the existence of a continuous Aumann-Shapley operator φ on the closed subspace of BV generated by powers of nonatomic σ-additive positive modular measures on L. The integral representation of φ on a class of functions that correspond to measure games is also exhibited.
2006
File in questo prodotto:
File Dimensione Formato  
positive.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 248 kB
Formato Adobe PDF
248 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/16688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact