Observations from spaceborne microwave (MW) and infrared (IR) passive sensors are the backbone of current satellite meteorology, essential for data assimilation into modern numerical weather prediction and for climate benchmarking. While MW and IR observations from space offer complementary features with respect to cloud properties, their synergy for cloud investigation is currently underexplored, despite the presence of both MW and IR sensors on operational meteorological satellites such as the EUMETSAT Polar System (EPS) MetOp series. As such, several key cloud microphysical properties are not part of the operational products available from EPS MetOp sensors. In addition, the EPS Second Generation (EPS-SG) series, scheduled for launch starting from 2024 onward, will carry sensors such as the Microwave Sounder (MWS) and IASI Next Generation (IASI-NG), enhancing spatial and spectral resolutions and thus capacity to retrieve cloud properties. This article presents the Combined MWS and IASI-NG Soundings for Cloud Properties (ComboCloud) project, funded by EUMETSAT with the overall objective to specify, prototype, and validate algorithms for the retrieval of cloud microphysical properties (e.g., water content and drop effective radius) from the synergy of passive MW and IR observations. The article presents the synergy rationale, the algorithm design, and the results obtained exploiting simulated observations from EPS and EPS-SG sensors, quantifying the benefits to be expected from the MW-IR synergy and the new generation sensors.

Spectrum Synergy for Investigating Cloud Microphysics

Serio, C;Masiello, G;Mastro, P;Gallucci, D;
2023-01-01

Abstract

Observations from spaceborne microwave (MW) and infrared (IR) passive sensors are the backbone of current satellite meteorology, essential for data assimilation into modern numerical weather prediction and for climate benchmarking. While MW and IR observations from space offer complementary features with respect to cloud properties, their synergy for cloud investigation is currently underexplored, despite the presence of both MW and IR sensors on operational meteorological satellites such as the EUMETSAT Polar System (EPS) MetOp series. As such, several key cloud microphysical properties are not part of the operational products available from EPS MetOp sensors. In addition, the EPS Second Generation (EPS-SG) series, scheduled for launch starting from 2024 onward, will carry sensors such as the Microwave Sounder (MWS) and IASI Next Generation (IASI-NG), enhancing spatial and spectral resolutions and thus capacity to retrieve cloud properties. This article presents the Combined MWS and IASI-NG Soundings for Cloud Properties (ComboCloud) project, funded by EUMETSAT with the overall objective to specify, prototype, and validate algorithms for the retrieval of cloud microphysical properties (e.g., water content and drop effective radius) from the synergy of passive MW and IR observations. The article presents the synergy rationale, the algorithm design, and the results obtained exploiting simulated observations from EPS and EPS-SG sensors, quantifying the benefits to be expected from the MW-IR synergy and the new generation sensors.
2023
File in questo prodotto:
File Dimensione Formato  
1520-0477-BAMS-D-22-0008.1 (3).pdf

accesso aperto

Descrizione: Pdf Editoriale
Tipologia: Pdf editoriale
Licenza: Creative commons
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/166694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact