Lateral saturated soil hydraulic conductivity, Ks,l, is the soil property governing subsurface water transfer in hillslopes, and the key parameter in many numerical models simulating hydrological processes at the hillslope and catchment scales. Likewise, the hydrological connectivity of the lateral flow paths plays a significant role in determining the rate of the subsurface flow at various spatial scales. This study investigates the relationship between Ks,l and hydrological connectivity at the hillslope spatial scale. Ks,l was determined by the subsurface flow rates intercepted by drains and water table depths observed in a well network. The hydrological connectivity was evaluated by the synchronicity among water table peaks, and between these and the peaks of the drained flow. Rainfall and soil moisture were used to investigate the influence of the transient hydrological soil condition on connectivity and Ks,l. As the synchronicity of the water table response between wells increased, the lag times between the peaks of water levels and those of the drained subsurface flow decreased. Moreover, the most synchronic water table rises determined the highest drainage rates. The relationships between Ks,l and water table depths were highly non-linear, with a sharp increase in the values for water table levels close to the soil surface. Estimated Ks,l values for the full saturated soil were in the order of thousands of mm h−1, suggesting the activation of macropores in the root zone. The Ks,l values determined at the peak of the drainage events were correlated with the indicators of synchronicity. The sum of cumulative rainfall and antecedent soil moisture was correlated with the connectivity indicators and Ks,l. We suggest that, for simulating realistic processes at the hillslope scale, the hydrological connectivity could be implicitly considered in hydrological modelling through an evaluation of Ks,l at the same spatial scale.

Large-scale lateral saturated soil hydraulic conductivity as a metric for the connectivity of subsurface flow paths at hillslope scale

Di Prima S.;
2022-01-01

Abstract

Lateral saturated soil hydraulic conductivity, Ks,l, is the soil property governing subsurface water transfer in hillslopes, and the key parameter in many numerical models simulating hydrological processes at the hillslope and catchment scales. Likewise, the hydrological connectivity of the lateral flow paths plays a significant role in determining the rate of the subsurface flow at various spatial scales. This study investigates the relationship between Ks,l and hydrological connectivity at the hillslope spatial scale. Ks,l was determined by the subsurface flow rates intercepted by drains and water table depths observed in a well network. The hydrological connectivity was evaluated by the synchronicity among water table peaks, and between these and the peaks of the drained flow. Rainfall and soil moisture were used to investigate the influence of the transient hydrological soil condition on connectivity and Ks,l. As the synchronicity of the water table response between wells increased, the lag times between the peaks of water levels and those of the drained subsurface flow decreased. Moreover, the most synchronic water table rises determined the highest drainage rates. The relationships between Ks,l and water table depths were highly non-linear, with a sharp increase in the values for water table levels close to the soil surface. Estimated Ks,l values for the full saturated soil were in the order of thousands of mm h−1, suggesting the activation of macropores in the root zone. The Ks,l values determined at the peak of the drainage events were correlated with the indicators of synchronicity. The sum of cumulative rainfall and antecedent soil moisture was correlated with the connectivity indicators and Ks,l. We suggest that, for simulating realistic processes at the hillslope scale, the hydrological connectivity could be implicitly considered in hydrological modelling through an evaluation of Ks,l at the same spatial scale.
2022
File in questo prodotto:
File Dimensione Formato  
Hydrological Processes - 2022 - Pirastru - Large‐scale lateral saturated soil hydraulic conductivity as a metric for the.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Creative commons
Dimensione 6.79 MB
Formato Adobe PDF
6.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/166481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact