Any transversally holomorphic foliated map $\varphi: (M \mathcal{F}) \to (M^\prime , \mathcal{F}^\prime)$ of Kählerian foliations with $\mathcal{F}$ harmonic, is shown to be a transversally harmonic map and an absolute minimum of the energy functional $E_T (\varphi ) = \frac{1}{2} \int_M || d_T \varphi ||^2 \mu$ in its foliated homotopy class.
On transversally holomorphic maps of Kählerian foliations
BARLETTA, Elisabetta;DRAGOMIR, Sorin
1998-01-01
Abstract
Any transversally holomorphic foliated map $\varphi: (M \mathcal{F}) \to (M^\prime , \mathcal{F}^\prime)$ of Kählerian foliations with $\mathcal{F}$ harmonic, is shown to be a transversally harmonic map and an absolute minimum of the energy functional $E_T (\varphi ) = \frac{1}{2} \int_M || d_T \varphi ||^2 \mu$ in its foliated homotopy class.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.