Soil fertility (SF) assessment is an important strategy for identifying agriculturally productive lands, particularly in areas that are vulnerable to climate change. This research focuses on detecting SF zones in Firozabad district, Uttar Pradesh, India, for agricultural purposes, so that they can be prioritized for future management using the fuzzy technique in the Arc GIS model-builder. The model computing technique was also deployed to determine the different fertility zones, considering 17 soil parameters. The derived fuzzy technique outperformed the traditional method of dividing the sampling sites into clusters to correlate soil fertility classes with the studied soil samples. The prioritization of the soil factors and a spatial analysis of the fertility areas were carried out using the Analytic Hierarchy Process (AHP) and GIS tools, respectively. The AHP analysis outcome indicated that hydraulic properties had the highest weighted value, followed by physical and chemical properties, regarding their influence on SF. The spatial distribution map of physico-chemical properties also clearly depicts the standard classification. A fuzzy priority map was implemented based on all the classes parameters to identify the five fertility classes of the soil, namely very high (0.05%); high (16.59%); medium (60.94%); low (22.34%); and very low (0.07% of total area). This study will be of significant value to planners and policymakers in the future planning and development of activities and schemes that aim to solve similar problems across the country.

Combining Fuzzy, Multicriteria and Mapping Techniques to Assess Soil Fertility for Agricultural Development: A Case Study of Firozabad District, Uttar Pradesh, India

Scopa, Antonio
Membro del Collaboration Group
;
2023-01-01

Abstract

Soil fertility (SF) assessment is an important strategy for identifying agriculturally productive lands, particularly in areas that are vulnerable to climate change. This research focuses on detecting SF zones in Firozabad district, Uttar Pradesh, India, for agricultural purposes, so that they can be prioritized for future management using the fuzzy technique in the Arc GIS model-builder. The model computing technique was also deployed to determine the different fertility zones, considering 17 soil parameters. The derived fuzzy technique outperformed the traditional method of dividing the sampling sites into clusters to correlate soil fertility classes with the studied soil samples. The prioritization of the soil factors and a spatial analysis of the fertility areas were carried out using the Analytic Hierarchy Process (AHP) and GIS tools, respectively. The AHP analysis outcome indicated that hydraulic properties had the highest weighted value, followed by physical and chemical properties, regarding their influence on SF. The spatial distribution map of physico-chemical properties also clearly depicts the standard classification. A fuzzy priority map was implemented based on all the classes parameters to identify the five fertility classes of the soil, namely very high (0.05%); high (16.59%); medium (60.94%); low (22.34%); and very low (0.07% of total area). This study will be of significant value to planners and policymakers in the future planning and development of activities and schemes that aim to solve similar problems across the country.
2023
File in questo prodotto:
File Dimensione Formato  
land-12-00860.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/165734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact