The paper presents a review of the far-infrared (FIR) properties of the Earth's atmosphere and their role in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that in recent years we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of ∼288 K and is due primarily to strong absorption of outgoing longwave energy by water vapor, carbon dioxide, and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example, the water vapor and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.
The Far-Infrared Earth
SERIO, Carmine;MASIELLO, Guido
2008-01-01
Abstract
The paper presents a review of the far-infrared (FIR) properties of the Earth's atmosphere and their role in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that in recent years we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of ∼288 K and is due primarily to strong absorption of outgoing longwave energy by water vapor, carbon dioxide, and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example, the water vapor and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.File | Dimensione | Formato | |
---|---|---|---|
2008_Harries_RG_1of2.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
10 MB
Formato
Adobe PDF
|
10 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2008_Harries_RG_2of2.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
3.08 MB
Formato
Adobe PDF
|
3.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.