This work explores the coupling of advanced combustion strategies for engines with bio-based fuels. The characteristics of ethanol combustion in HCCI mode are investigated by using a multidimensional CFD model coupled with an accurate combustion model. In such a model, the chemical source terms are computed by a detailed kinetic mechanism and are corrected in order to take into account the influence of turbulence. The predictive capability of the model is proven by comparing the results with experimental measurements. The sensitivity analysis to initial and boundary conditions gives suggestions in order to increase engine efficiency and reduce pollutant emissions.
Multidimensional Simulation of Ethanol HCCI Engines
VIGGIANO, ANNARITA;MAGI, Vinicio
2009-01-01
Abstract
This work explores the coupling of advanced combustion strategies for engines with bio-based fuels. The characteristics of ethanol combustion in HCCI mode are investigated by using a multidimensional CFD model coupled with an accurate combustion model. In such a model, the chemical source terms are computed by a detailed kinetic mechanism and are corrected in order to take into account the influence of turbulence. The predictive capability of the model is proven by comparing the results with experimental measurements. The sensitivity analysis to initial and boundary conditions gives suggestions in order to increase engine efficiency and reduce pollutant emissions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.