The design of compounds able to combine the selective inhibition of cyclooxygenase-2 (COX-2) with the release of nitric oxide (NO) is a promising strategy to achieve potent anti-inflammatory agents endowed with an overall safer profile and reduced toxicity upon gastrointestinal and cardiovascular systems. With the aim of generating novel and selective COX-2 inhibiting NO-donors (CINOD) and encouraged by the promising results obtained with our nitrooxy- and hydroxyethyl ethers 11 and 12 reported in previous works, we shifted our attention on the synthesis of isosteric thioanalogs nitrooxy- and hydroxy ethyl sulfides 13a-c and 14a-c, respectively, along with their oxidation products nitrooxy- and hydroxyethyl sulfoxides 15a-c and 16a-c, respectively, also referred to as thio-CINOD. Preliminary data and metabolic analysis highlighted how the isosteric substitution of the ethereal oxygen atom of 11a-c with sulfur in compounds 13a-c, independently from the presence and the number of fluorine atoms in N1-phenyl ring, leads to new selective and highly potent COX-2 inhibitors, capable to induce vasorelaxant responses in vivo. The same behavior is observed with their oxidized counterparts nitrooxyethyl sulfoxides 15a-c, in which the oxidation state of the sulfur atom and the presence of the additional oxygen atom play a substantial role in enhancing compounds activity and vasorelaxation. In addition, the screened compounds proved significantly efficacious in mouse models of inflammation and nociception at the dose of 20 mg/kg.

Novel analgesic/anti-inflammatory agents: 1,5-Diarylpyrrole nitrooxyethyl sulfides and related compounds as Cyclooxygenase-2 inhibitors containing a nitric oxide donor moiety endowed with vasorelaxant properties

Di Capua A.;
2022-01-01

Abstract

The design of compounds able to combine the selective inhibition of cyclooxygenase-2 (COX-2) with the release of nitric oxide (NO) is a promising strategy to achieve potent anti-inflammatory agents endowed with an overall safer profile and reduced toxicity upon gastrointestinal and cardiovascular systems. With the aim of generating novel and selective COX-2 inhibiting NO-donors (CINOD) and encouraged by the promising results obtained with our nitrooxy- and hydroxyethyl ethers 11 and 12 reported in previous works, we shifted our attention on the synthesis of isosteric thioanalogs nitrooxy- and hydroxy ethyl sulfides 13a-c and 14a-c, respectively, along with their oxidation products nitrooxy- and hydroxyethyl sulfoxides 15a-c and 16a-c, respectively, also referred to as thio-CINOD. Preliminary data and metabolic analysis highlighted how the isosteric substitution of the ethereal oxygen atom of 11a-c with sulfur in compounds 13a-c, independently from the presence and the number of fluorine atoms in N1-phenyl ring, leads to new selective and highly potent COX-2 inhibitors, capable to induce vasorelaxant responses in vivo. The same behavior is observed with their oxidized counterparts nitrooxyethyl sulfoxides 15a-c, in which the oxidation state of the sulfur atom and the presence of the additional oxygen atom play a substantial role in enhancing compounds activity and vasorelaxation. In addition, the screened compounds proved significantly efficacious in mouse models of inflammation and nociception at the dose of 20 mg/kg.
2022
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0223523422005177-main.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: Versione editoriale
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/162898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact