A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA. [Figure not available: see fulltext.] © 2013 Springer-Verlag Berlin Heidelberg.

H-binding of size- and polarity-fractionated soil and lignite humic acids after removal of metal and ash components

Drosos M.
Writing – Original Draft Preparation
;
2014-01-01

Abstract

A fractionation technique, combining dialysis removal of metal and ash components with hydrofluoric acid and pH 10 citrate buffer followed by chromatography of dialysis permeate on XAD-8 resin at decreasing pH values, has been applied to lignite humic acid (lignite-HA) and soil humic acid (soil-HA). H-binding data and non ideal competitive adsorption-Donnan model parameters were obtained for the HA fractions by theoretical analysis of H-binding data which reveal a significant increase of the carboxyl and the phenolic charge for the lignite-HA fractions vs. the parental lignite humic acid (LParentalHA). The fractionated lignite-HA material consisted mainly of permeate fractions, some of which were fulvic acid-like. The fractionated soil-HA material consisted mainly of large macromolecular structures that did not permeate the dialysis membrane during deashing. Chargeable groups had comparable concentrations in soil-HA fractions and parental soil humic acid (SParentalHA), indicating minimal interference of ash components with carboxyl and phenolic (and/or enolic) groups. Fractionation of HA, combined with theoretical analysis of H-binding, can distinguish the supramolecular vs. macromolecular nature of fractions within the same parental HA. [Figure not available: see fulltext.] © 2013 Springer-Verlag Berlin Heidelberg.
2014
File in questo prodotto:
File Dimensione Formato  
7.pdf

solo utenti autorizzati

Licenza: Non definito
Dimensione 532.11 kB
Formato Adobe PDF
532.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/160901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact