Little is known on the effect of application of different nitrogen (N) fertilizers on soil organic carbon (SOC) sequestration in soil humic substances (HS). We investigated HS molecular characteristics in an Orthic Acrisol, southwestern China, under 2-year field fertilization of a urea (U), a polymer-coated urea (PCU) and a biochar-coated urea (BCU) using 13 C-CPMAS-NMR spectroscopy. Results showed that N fertilization promoted SOC sequestration into HS and favored alkyl-C and aromatic-C rather than O-alkyl-C and carbonyl-C for humic acids and humin in soil. Application of PCU and BCU may better enhance vegetable yield, SOC sequestration, and HS stability than the U application, which may benefit from longer time of N existence and higher total N in soil. Among the N treatments, BCU application mostly affected the compositions and stability of SOC in the HS for the OC input and prime effect of biochar for SOC transformation.

Organic Carbon Sequestration in Soil Humic Substances As Affected by Application of Different Nitrogen Fertilizers in a Vegetable-Rotation Cropping System

Drosos M.
Membro del Collaboration Group
;
2019-01-01

Abstract

Little is known on the effect of application of different nitrogen (N) fertilizers on soil organic carbon (SOC) sequestration in soil humic substances (HS). We investigated HS molecular characteristics in an Orthic Acrisol, southwestern China, under 2-year field fertilization of a urea (U), a polymer-coated urea (PCU) and a biochar-coated urea (BCU) using 13 C-CPMAS-NMR spectroscopy. Results showed that N fertilization promoted SOC sequestration into HS and favored alkyl-C and aromatic-C rather than O-alkyl-C and carbonyl-C for humic acids and humin in soil. Application of PCU and BCU may better enhance vegetable yield, SOC sequestration, and HS stability than the U application, which may benefit from longer time of N existence and higher total N in soil. Among the N treatments, BCU application mostly affected the compositions and stability of SOC in the HS for the OC input and prime effect of biochar for SOC transformation.
2019
File in questo prodotto:
File Dimensione Formato  
31.pdf

solo utenti autorizzati

Licenza: Non definito
Dimensione 986.34 kB
Formato Adobe PDF
986.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/160884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact