This letter proposes a novel technique for automatic classification of the dominant scattering mechanisms associated with the pixels of polarimetric SAR images. Focusing on the heterogeneous scenario wherein the polarimetric image pixels share the same covariance but different power levels, the original data are replaced by a maximal invariant statistic in order to remove the dependence on the scaling factors. Then, the classification problem is formulated as a multiple hypothesis test which is addressed by applying the model order selection rules. The performance analysis is conducted on both simulated and measured data and points out the effectiveness of the proposed approach.

Polarimetric Covariance Eigenvalues Classification in SAR Images

Pallotta L.
;
2019-01-01

Abstract

This letter proposes a novel technique for automatic classification of the dominant scattering mechanisms associated with the pixels of polarimetric SAR images. Focusing on the heterogeneous scenario wherein the polarimetric image pixels share the same covariance but different power levels, the original data are replaced by a maximal invariant statistic in order to remove the dependence on the scaling factors. Then, the classification problem is formulated as a multiple hypothesis test which is addressed by applying the model order selection rules. The performance analysis is conducted on both simulated and measured data and points out the effectiveness of the proposed approach.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/160708
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact