The groundwater vulnerability assessment to seawater intrusion (SWI), applying the GIS-based overlay-index GALDIT method, is provided for the Metaponto coastal aquifer (Basilicata region, southern Italy). The method is based on six conditioning parameters: groundwater occurrence (G), aquifer hydraulic conductivity (A), groundwater level (L), distance from the shore (D), impact of the existing status of SWI (I), and aquifer thickness (T). Three vulnerability classes were detected: low, moderate, and high, covering 70.40%, 22.65%, and 6.95% of the study area, respectively. The highest class is located close to the coastal sector due to the proximity to the sea, the greater thickness of the aquifer, and the shallow freshwater-seawater interface. To evaluate the sensitivity of the method on the predictive analysis and the influence of the single parameter and weight on the final vulnerability, the sensitivity analysis was carried out. The single-parameter analysis indicated that the factors such as groundwater table above sea level (a.s.l.), aquifer type, and impact of SWI have the greatest influence on the vulnerability. The application leads to the vulnerability mapping to SWI in the coastal plain that results to be a promising tool for decisionmaking finalized to properly manage groundwater.

Seawater intrusion vulnerability assessment by Galdit method in the Metaponto coastal aquifer (Basilicata, Italy)

Rosalba MUZZILLO;Filomena CANORA
;
Francesco SDAO
2022-01-01

Abstract

The groundwater vulnerability assessment to seawater intrusion (SWI), applying the GIS-based overlay-index GALDIT method, is provided for the Metaponto coastal aquifer (Basilicata region, southern Italy). The method is based on six conditioning parameters: groundwater occurrence (G), aquifer hydraulic conductivity (A), groundwater level (L), distance from the shore (D), impact of the existing status of SWI (I), and aquifer thickness (T). Three vulnerability classes were detected: low, moderate, and high, covering 70.40%, 22.65%, and 6.95% of the study area, respectively. The highest class is located close to the coastal sector due to the proximity to the sea, the greater thickness of the aquifer, and the shallow freshwater-seawater interface. To evaluate the sensitivity of the method on the predictive analysis and the influence of the single parameter and weight on the final vulnerability, the sensitivity analysis was carried out. The single-parameter analysis indicated that the factors such as groundwater table above sea level (a.s.l.), aquifer type, and impact of SWI have the greatest influence on the vulnerability. The application leads to the vulnerability mapping to SWI in the coastal plain that results to be a promising tool for decisionmaking finalized to properly manage groundwater.
2022
File in questo prodotto:
File Dimensione Formato  
IJEGE 2022.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/160086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact