We prove that every closed exhaustive vector-valued modular measure on a lattice ordered effect algebra L can be decomposed into the sum of a Lyapunov exhaustive modular measure (i.e. its restriction to every interval of L has convex range) and an ”anti-Lyapunov” exhaustive modular measure. This result extends a Kluvanek-Knowles decomposition theorem for measures on Boolean algebras

Lyapunov decomposition of measures on effect algebras

AVALLONE, Anna;VITOLO, Paolo
2009-01-01

Abstract

We prove that every closed exhaustive vector-valued modular measure on a lattice ordered effect algebra L can be decomposed into the sum of a Lyapunov exhaustive modular measure (i.e. its restriction to every interval of L has convex range) and an ”anti-Lyapunov” exhaustive modular measure. This result extends a Kluvanek-Knowles decomposition theorem for measures on Boolean algebras
2009
File in questo prodotto:
File Dimensione Formato  
lyapunov.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 146.11 kB
Formato Adobe PDF
146.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/15827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact