The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively onboard Sentinel-2A/2B and Landsat 8 satellites, thanks to their features especially in terms of spatial/spectral resolution, represents two important instruments for investigating thermal volcanic activity from space. In this study, we used data from those sensors to test an original multichannel algorithm, which aims at mapping volcanic thermal anomalies at a global scale. The algorithm, named Normalized Hotspot Indices (NHI), combines two normalized indices, analyzing near infrared (NIR) and short wave infrared (SWIR) radiances, to identify hotspot pixels in daylight conditions. Results, achieved studying a number of active volcanoes located in different geographic areas and characterized by a different eruptive behavior, demonstrated the NHI capacity in mapping both subtle and more intense volcanic thermal anomalies despite some limitations (e.g., missed detections because of clouds/volcanic plumes). In addition, the study shows that the performance of NHI might be further increased using some additional spectral/spatial tests, in view of a possible usage of this algorithm within a known multi-temporal scheme of satellite data analysis. The low processing times and the straight forth exportability to data from other sensors make NHI, which is sensitive even to other high temperature sources, suited for mapping hot volcanic targets integrating information provided by current and well-established satellite-based volcanoes monitoring systems.

A Multi-Channel Algorithm for Mapping Volcanic Thermal Anomalies by Means of Sentinel-2 MSI and Landsat-8 OLI Data

Nicola Genzano;Alfredo Falconieri;Nicola Pergola
2019

Abstract

The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively onboard Sentinel-2A/2B and Landsat 8 satellites, thanks to their features especially in terms of spatial/spectral resolution, represents two important instruments for investigating thermal volcanic activity from space. In this study, we used data from those sensors to test an original multichannel algorithm, which aims at mapping volcanic thermal anomalies at a global scale. The algorithm, named Normalized Hotspot Indices (NHI), combines two normalized indices, analyzing near infrared (NIR) and short wave infrared (SWIR) radiances, to identify hotspot pixels in daylight conditions. Results, achieved studying a number of active volcanoes located in different geographic areas and characterized by a different eruptive behavior, demonstrated the NHI capacity in mapping both subtle and more intense volcanic thermal anomalies despite some limitations (e.g., missed detections because of clouds/volcanic plumes). In addition, the study shows that the performance of NHI might be further increased using some additional spectral/spatial tests, in view of a possible usage of this algorithm within a known multi-temporal scheme of satellite data analysis. The low processing times and the straight forth exportability to data from other sensors make NHI, which is sensitive even to other high temperature sources, suited for mapping hot volcanic targets integrating information provided by current and well-established satellite-based volcanoes monitoring systems.
File in questo prodotto:
File Dimensione Formato  
NHI Marchese 2019 RS.pdf

solo utenti autorizzati

Licenza: Creative commons
Dimensione 3.91 MB
Formato Adobe PDF
3.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/156891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact