The Normalized Hotspot Indices (NHI) tool is a Google Earth Engine (GEE)-App devel-oped to investigate and map worldwide volcanic thermal anomalies in daylight conditions, using shortwave infrared (SWIR) and near infrared (NIR) data from the Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel 2 and Landsat 8 satel-lites. The NHI tool offers the possibility of ingesting data from other sensors. In this direction, we tested the NHI algorithm for the first time on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. In this study, we show the results of this preliminary implementa-tion, achieved investigating the Kilauea (Hawaii, USA), Klyuchevskoy (Kamchatka; Russia), Shishaldin (Alaska; USA), and Telica (Nicaragua) thermal activities of March 2000–2008. We assessed the NHI detections through comparison with the ASTER Volcano Archive (AVA), the man-ual inspection of satellite imagery, and the information from volcanological reports. Results show that NHI integrated the AVA observations, with a percentage of unique thermal anomaly detections ranging between 8.8% (at Kilauea) and 100% (at Shishaldin). These results demonstrate the success-ful NHI exportability to ASTER data acquired before the failure of SWIR subsystem. The full inges-tion of the ASTER data collection, available in GEE, within the NHI tool allows us to develop a suite of multi-platform satellite observations, including thermal anomaly products from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), which could support the investigation of active volcanoes from space, complementing information from other systems.

Implementation of the NHI (Normalized hot spot indices) algorithm on infrared aster data: Results and future perspectives

Genzano N.;Pergola N.
2021-01-01

Abstract

The Normalized Hotspot Indices (NHI) tool is a Google Earth Engine (GEE)-App devel-oped to investigate and map worldwide volcanic thermal anomalies in daylight conditions, using shortwave infrared (SWIR) and near infrared (NIR) data from the Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel 2 and Landsat 8 satel-lites. The NHI tool offers the possibility of ingesting data from other sensors. In this direction, we tested the NHI algorithm for the first time on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. In this study, we show the results of this preliminary implementa-tion, achieved investigating the Kilauea (Hawaii, USA), Klyuchevskoy (Kamchatka; Russia), Shishaldin (Alaska; USA), and Telica (Nicaragua) thermal activities of March 2000–2008. We assessed the NHI detections through comparison with the ASTER Volcano Archive (AVA), the man-ual inspection of satellite imagery, and the information from volcanological reports. Results show that NHI integrated the AVA observations, with a percentage of unique thermal anomaly detections ranging between 8.8% (at Kilauea) and 100% (at Shishaldin). These results demonstrate the success-ful NHI exportability to ASTER data acquired before the failure of SWIR subsystem. The full inges-tion of the ASTER data collection, available in GEE, within the NHI tool allows us to develop a suite of multi-platform satellite observations, including thermal anomaly products from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), which could support the investigation of active volcanoes from space, complementing information from other systems.
2021
File in questo prodotto:
File Dimensione Formato  
Mazzeo 2021 sensors.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: Creative commons
Dimensione 5.02 MB
Formato Adobe PDF
5.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/156668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact