Reactive oxygen species (ROS) of varied types can be yielded in plants at several primary sites (such as the chloroplast, mitochondria, and peroxisomes) under normal aerobic metabolism via processes including photosynthetic and respiratory electron transport chains. However, impaired oxidant-antioxidant balance and extreme growth conditions in plants are bound to cause increases in the cellular concentrations of radical and non-radical ROS such as superoxide anions (O2•−), hydroxyl radical (OH•), singlet oxygen (1O2), and hydrogen peroxide (H2O2). On the one hand, H2O2 has no unpaired electrons and is moderately reactive. Owing to its relative stability compared to other ROS and its capacity for diffusing through aquaporins in the membranes and over more considerable distances within the cell (Bienert et al., 2007), H2O2 acts as a stress signal transducer and contributes to numerous physiological functions in plants. On the other hand, H2O2 is a relatively long-lived molecule with a half-life of 1 ms, readily crosses biological membranes, and consequently can bring oxidative consequences far from the site of its formation (Neill et al., 2002; Sharma et al., 2012; Sehar et al., 2021). The Frontiers Research Topic “Recent Insights into the Double Role of Hydrogen Peroxide in Plants” highlighted the major mechanisms underlying the dual role of H2O2 in response to different abiotic stresses in plants. This Research Topic incorporated 19 publications, including 10 original research articles, 8 reviews, and one perspective article.

Editorial: Recent Insights Into the Double Role of Hydrogen Peroxide in Plants

Sofo A;
2022

Abstract

Reactive oxygen species (ROS) of varied types can be yielded in plants at several primary sites (such as the chloroplast, mitochondria, and peroxisomes) under normal aerobic metabolism via processes including photosynthetic and respiratory electron transport chains. However, impaired oxidant-antioxidant balance and extreme growth conditions in plants are bound to cause increases in the cellular concentrations of radical and non-radical ROS such as superoxide anions (O2•−), hydroxyl radical (OH•), singlet oxygen (1O2), and hydrogen peroxide (H2O2). On the one hand, H2O2 has no unpaired electrons and is moderately reactive. Owing to its relative stability compared to other ROS and its capacity for diffusing through aquaporins in the membranes and over more considerable distances within the cell (Bienert et al., 2007), H2O2 acts as a stress signal transducer and contributes to numerous physiological functions in plants. On the other hand, H2O2 is a relatively long-lived molecule with a half-life of 1 ms, readily crosses biological membranes, and consequently can bring oxidative consequences far from the site of its formation (Neill et al., 2002; Sharma et al., 2012; Sehar et al., 2021). The Frontiers Research Topic “Recent Insights into the Double Role of Hydrogen Peroxide in Plants” highlighted the major mechanisms underlying the dual role of H2O2 in response to different abiotic stresses in plants. This Research Topic incorporated 19 publications, including 10 original research articles, 8 reviews, and one perspective article.
File in questo prodotto:
File Dimensione Formato  
2022 - Anjum et al - Frontiers (editorial).pdf

accesso aperto

Descrizione: Lavoro
Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 192.58 kB
Formato Adobe PDF
192.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/155327
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact