We study the differential polynomial identities of the algebra UTm(F) under the derivation action of the two dimensional metabelian Lie algebra, obtaining a generating set of the TL-ideal they constitute. Then we determine the Sn-structure of their proper multilinear spaces and, for the minimal cases m = 2, 3, their exact differential codimension sequence.

Differential Polynomial Identities of Upper Triangular Matrices Under the Action of the Two-Dimensional Metabelian Lie Algebra

Di Vincenzo O. M.;
2022-01-01

Abstract

We study the differential polynomial identities of the algebra UTm(F) under the derivation action of the two dimensional metabelian Lie algebra, obtaining a generating set of the TL-ideal they constitute. Then we determine the Sn-structure of their proper multilinear spaces and, for the minimal cases m = 2, 3, their exact differential codimension sequence.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/154286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact