Pyrolyzed carbons from bio-waste sources are renewable nanomaterials for sustainable negative electrodes in Li- and Na-ion batteries. Here, carbon derived from a hazelnut shell has been obtained by hydrothermal processing of the bio-waste followed by thermal treatments and laser irradiation in liquid. A non-focused nanosecond pulsed laser source has been used to irradiate pyrolyzed carbon particles suspended in acetonitrile to modify the surface and morphology. Morphological, structural, and compositional changes have been investigated by microscopy, spectroscopy, and diffraction to compare the materials properties after thermal treatments as well as before and after the irradiation. Laser irradiation in acetonitrile induces remarkable alteration in the nanomorphology, increase in the surface area and nitrogen enrichment of the carbon surfaces. These materials alterations are beneficial for the electrochemical performance in lithium half cells as proved by galvanostatic cycling at room temperature.

Laser Irradiation of a Bio-Waste Derived Carbon Unlocks Performance Enhancement in Secondary Lithium Batteries

Mariangela Curcio
;
Angela De Bonis;Roberto Teghil
2021-01-01

Abstract

Pyrolyzed carbons from bio-waste sources are renewable nanomaterials for sustainable negative electrodes in Li- and Na-ion batteries. Here, carbon derived from a hazelnut shell has been obtained by hydrothermal processing of the bio-waste followed by thermal treatments and laser irradiation in liquid. A non-focused nanosecond pulsed laser source has been used to irradiate pyrolyzed carbon particles suspended in acetonitrile to modify the surface and morphology. Morphological, structural, and compositional changes have been investigated by microscopy, spectroscopy, and diffraction to compare the materials properties after thermal treatments as well as before and after the irradiation. Laser irradiation in acetonitrile induces remarkable alteration in the nanomorphology, increase in the surface area and nitrogen enrichment of the carbon surfaces. These materials alterations are beneficial for the electrochemical performance in lithium half cells as proved by galvanostatic cycling at room temperature.
2021
File in questo prodotto:
File Dimensione Formato  
nanomaterials-11-03183-v2 (1).pdf

accesso aperto

Descrizione: Articolo
Tipologia: Pdf editoriale
Licenza: Creative commons
Dimensione 3.81 MB
Formato Adobe PDF
3.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/154125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact