Nowadays, the huge production of Municipal Solid Waste (MSW) is one of the most strongly felt environmental issues. Consequently, the European Union (EU) delivers laws and regulations for better waste management, identifying the essential requirements for waste disposal operations and the characteristics that make waste hazardous to human health and the envi-ronment. In Italy, environmental regulations define, among other things, the characteristics of sites to be classified as “potentially contaminated”. From this perspective, the Basilicata region is cur-rently one of the Italian regions with the highest number of potentially polluted sites in proportion to the number of inhabitants. This research aimed to identify the possible effects of potentially toxic element (PTE) pollution due to waste disposal activities in three “potentially contaminated” sites in southern Italy. The area was affected by a release of inorganic pollutants with values over the thresholds ruled by national/European legislation. Potential physiological efficiency variations of vegetation were analyzed through the multitemporal processing of satellite images. Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) images were used to calcu-late the trend in the Normalized Difference Vegetation Index (NDVI) over the years. The mul-titemporal trends were analyzed using the median of the non-parametric Theil–Sen estimator. Fi-nally, the Mann–Kendall test was applied to evaluate trend significance featuring areas according to the contamination effects on investigated vegetation. The applied procedure led to the exclu-sion of significant effects on vegetation due to PTEs. Thus, waste disposal activities during previ-ous years do not seem to have significantly affected vegetation around targeted sites.

Assessing Vegetation Decline Due to Pollution from Solid Waste Management by a Multitemporal Remote Sensing Approach

Mancino G.
Writing – Original Draft Preparation
;
Greco M.
Conceptualization
;
Iacovino C.
Conceptualization
;
2022-01-01

Abstract

Nowadays, the huge production of Municipal Solid Waste (MSW) is one of the most strongly felt environmental issues. Consequently, the European Union (EU) delivers laws and regulations for better waste management, identifying the essential requirements for waste disposal operations and the characteristics that make waste hazardous to human health and the envi-ronment. In Italy, environmental regulations define, among other things, the characteristics of sites to be classified as “potentially contaminated”. From this perspective, the Basilicata region is cur-rently one of the Italian regions with the highest number of potentially polluted sites in proportion to the number of inhabitants. This research aimed to identify the possible effects of potentially toxic element (PTE) pollution due to waste disposal activities in three “potentially contaminated” sites in southern Italy. The area was affected by a release of inorganic pollutants with values over the thresholds ruled by national/European legislation. Potential physiological efficiency variations of vegetation were analyzed through the multitemporal processing of satellite images. Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI) images were used to calcu-late the trend in the Normalized Difference Vegetation Index (NDVI) over the years. The mul-titemporal trends were analyzed using the median of the non-parametric Theil–Sen estimator. Fi-nally, the Mann–Kendall test was applied to evaluate trend significance featuring areas according to the contamination effects on investigated vegetation. The applied procedure led to the exclu-sion of significant effects on vegetation due to PTEs. Thus, waste disposal activities during previ-ous years do not seem to have significantly affected vegetation around targeted sites.
2022
File in questo prodotto:
File Dimensione Formato  
Assessing-Vegetation-Decline-Due-to-Pollution-from-Solid-Waste-Management-by-a-Multitemporal-Remote-Sensing-ApproachRemote-Sensing.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 5.68 MB
Formato Adobe PDF
5.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/153885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact