A new shock-tracking technique that avoids re-meshing the computational grid around the moving shock-front was recently proposed by the authors (Ciallella et al., 2020). The method combines the unstructured shock-fitting (Paciorri and Bonfiglioli, 2009) approach, developed in the last decade by some of the authors, with ideas coming from embedded boundary methods. In particular, second-order extrapolations based on Taylor series expansions are employed to transfer the solution and retain high order of accuracy. This paper describes the basic idea behind the new method and further algorithmic improvements which make the extrapolated Discontinuity Tracking Technique (eDI T ) capable of dealing with complex shock-topologies featuring shock–shock and shock–wall interactions occurring in steady problems. This method paves the way to a new class of shock-tracking techniques truly independent on the mesh structure and flow solver. Various test-cases are included to prove the potential of the method, demonstrate the key features of the methodology, and thoroughly evaluate several technical aspects related to the extrapolation from/onto the shock, and their impact on accuracy, and conservation.

Extrapolated DIscontinuity Tracking for complex 2D shock interactions

Bonfiglioli, Aldo
2022-01-01

Abstract

A new shock-tracking technique that avoids re-meshing the computational grid around the moving shock-front was recently proposed by the authors (Ciallella et al., 2020). The method combines the unstructured shock-fitting (Paciorri and Bonfiglioli, 2009) approach, developed in the last decade by some of the authors, with ideas coming from embedded boundary methods. In particular, second-order extrapolations based on Taylor series expansions are employed to transfer the solution and retain high order of accuracy. This paper describes the basic idea behind the new method and further algorithmic improvements which make the extrapolated Discontinuity Tracking Technique (eDI T ) capable of dealing with complex shock-topologies featuring shock–shock and shock–wall interactions occurring in steady problems. This method paves the way to a new class of shock-tracking techniques truly independent on the mesh structure and flow solver. Various test-cases are included to prove the potential of the method, demonstrate the key features of the methodology, and thoroughly evaluate several technical aspects related to the extrapolation from/onto the shock, and their impact on accuracy, and conservation.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/153485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact