Early root traits and allometrics of wheat are important for competition and use of resources. They are under-utilized in research and un-explored in many ancient wheats. This is especially true for the rhizosheath emerging from root-soil interactions. We investigated root morphology, root/shoot relations and the amount of rhizosheath of four tetrapoid wheat seedlings (30 days after emergence): the italian landrace Saragolle Lucana and modern varieties Creso, Simeto and Ciclope, and tested the hypothesis that inoculation with Trichoderma harzianum T-22 (T-22) enhances rhizosheath formation and affects wheat varieties differently. Overall growth of non-inoculated plants showed different patterns in wheat varieties, with Saragolle and Ciclope at the two extremes: Saragolle invests in shoot rather than root mass, and in the occupation of space with highest (p < 0.05) shoot height to the uppermost internode (5.02 cm) and length-to-mass shoot (97.8 cm g−1) and root (more than 140 m g−1) ratios. This may be interpreted as maximizing competition for light but also as a compensation for low shoot efficiency due to the lowest (p < 0.05) recorded values of optically-measured chlorophyll content index (22.8). Ciclope invests in biomass with highest shoot (0.06 g) and root (0.04 g) mass and a thicker root system (average diameter 0.34 mm vs. 0.29 in Saragolle) as well as a highest root/shoot ratio (0.95 g g−1 vs. 0.54 in Saragolle). Rhizosheath mass ranged between 22.14 times that of shoot mass in Ciclope and 43.40 in Saragolle (different for p < 0.05). Inoculation with Trichoderma increased the amount of rhizosheath from 9.4% in Ciclope to 36.1% in Simeto and modified root architecture in this variety more than in others. Ours are the first data on roots and seedling shoot traits of Saragolle Lucana and of Trichoderma inoculation effects on rhizosheath. This opens to new unreported interpretations of effects of Trichoderma inoculation on improving plant growth.

Root Morphology, Allometric Relations and Rhizosheath of Ancient and Modern Tetraploid Wheats (Triticum durum Desf.) in Response to Inoculation with Trichoderma harzianum T-22

Bochicchio R.
;
Labella R.;Vitti A.;Nuzzaci M.;Logozzo G.;Amato M.
2022-01-01

Abstract

Early root traits and allometrics of wheat are important for competition and use of resources. They are under-utilized in research and un-explored in many ancient wheats. This is especially true for the rhizosheath emerging from root-soil interactions. We investigated root morphology, root/shoot relations and the amount of rhizosheath of four tetrapoid wheat seedlings (30 days after emergence): the italian landrace Saragolle Lucana and modern varieties Creso, Simeto and Ciclope, and tested the hypothesis that inoculation with Trichoderma harzianum T-22 (T-22) enhances rhizosheath formation and affects wheat varieties differently. Overall growth of non-inoculated plants showed different patterns in wheat varieties, with Saragolle and Ciclope at the two extremes: Saragolle invests in shoot rather than root mass, and in the occupation of space with highest (p < 0.05) shoot height to the uppermost internode (5.02 cm) and length-to-mass shoot (97.8 cm g−1) and root (more than 140 m g−1) ratios. This may be interpreted as maximizing competition for light but also as a compensation for low shoot efficiency due to the lowest (p < 0.05) recorded values of optically-measured chlorophyll content index (22.8). Ciclope invests in biomass with highest shoot (0.06 g) and root (0.04 g) mass and a thicker root system (average diameter 0.34 mm vs. 0.29 in Saragolle) as well as a highest root/shoot ratio (0.95 g g−1 vs. 0.54 in Saragolle). Rhizosheath mass ranged between 22.14 times that of shoot mass in Ciclope and 43.40 in Saragolle (different for p < 0.05). Inoculation with Trichoderma increased the amount of rhizosheath from 9.4% in Ciclope to 36.1% in Simeto and modified root architecture in this variety more than in others. Ours are the first data on roots and seedling shoot traits of Saragolle Lucana and of Trichoderma inoculation effects on rhizosheath. This opens to new unreported interpretations of effects of Trichoderma inoculation on improving plant growth.
2022
File in questo prodotto:
File Dimensione Formato  
plants-11-00159.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/153445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact